danieldux's picture
Refactor hierarchical precision, recall, and F-measure calculations***
8b7a053
raw
history blame
1.61 kB
def ancestors(class_label, hierarchy):
"""Return all ancestors of a given class label, excluding the root."""
if class_label not in hierarchy or not hierarchy[class_label]:
return set()
else:
# Recursively get all ancestors for each parent
anc = set(hierarchy[class_label])
for parent in hierarchy[class_label]:
anc.update(ancestors(parent, hierarchy))
return anc
def extend_with_ancestors(class_labels, hierarchy):
"""Extend a set of class labels with their ancestors."""
extended_set = set(class_labels)
for label in class_labels:
extended_set.update(ancestors(label, hierarchy))
return extended_set
def hierarchical_precision_recall(true_labels, predicted_labels, hierarchy):
"""Calculate hierarchical precision and recall."""
true_extended = [extend_with_ancestors(ci, hierarchy) for ci in true_labels]
predicted_extended = [
extend_with_ancestors(c_prime_i, hierarchy) for c_prime_i in predicted_labels
]
intersect_sum = sum(
len(ci & c_prime_i) for ci, c_prime_i in zip(true_extended, predicted_extended)
)
predicted_sum = sum(len(c_prime_i) for c_prime_i in predicted_extended)
true_sum = sum(len(ci) for ci in true_extended)
hP = intersect_sum / predicted_sum if predicted_sum > 0 else 0
hR = intersect_sum / true_sum if true_sum > 0 else 0
return hP, hR
def hierarchical_f_measure(hP, hR, beta=1.0):
"""Calculate the hierarchical F-measure."""
if hP + hR == 0:
return 0
return (beta**2 + 1) * hP * hR / (beta**2 * hP + hR)