|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ISCO-08 Hierarchical Accuracy Measure.""" |
|
|
|
from typing import List, Set, Dict, Tuple |
|
import evaluate |
|
import datasets |
|
import re |
|
|
|
|
|
|
|
_CITATION = """ |
|
@article{scikit-learn, |
|
title={Scikit-learn: Machine Learning in {P}ython}, |
|
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. |
|
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. |
|
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and |
|
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, |
|
journal={Journal of Machine Learning Research}, |
|
volume={12}, |
|
pages={2825--2830}, |
|
year={2011} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The ISCO-08 Hierarchical Accuracy Measure is an implementation of the measure described in [Functional Annotation of Genes Using Hierarchical Text Categorization](https://www.researchgate.net/publication/44046343_Functional_Annotation_of_Genes_Using_Hierarchical_Text_Categorization) (Kiritchenko, Svetlana and Famili, Fazel. 2005) and adapted for the ISCO-08 classification scheme by the International Labour Organization. |
|
|
|
The measure rewards more precise classifications that correctly identify an occupation's placement down to the specific Unit group level and applies penalties for misclassifications based on the hierarchical distance between the correct and assigned categories. |
|
|
|
""" |
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Calculates hierarchical precision, hierarchical recall and hierarchical F1 given a list of reference codes and predicted codes from the ISCO-08 taxonomy by the International Labour Organization. |
|
|
|
Args: |
|
- references (List[str]): List of ISCO-08 reference codes. Each reference code should be a single token, 4-digit ISCO-08 code string. |
|
- predictions (List[str]): List of machine predicted or human assigned ISCO-08 codes to score. Each prediction should be a single token, 4-digit ISCO-08 code string. |
|
|
|
Returns: |
|
- hierarchical_precision (`float` or `int`): Hierarchical precision score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy. |
|
- hierarchical_recall: Hierarchical recall score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy. |
|
- hierarchical_fmeasure: Hierarchical F1 score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy. |
|
|
|
Examples: |
|
Example 1 |
|
|
|
>>> ham = evaluate.load("danieldux/isco_hierarchical_accuracy") |
|
>>> results = ham.compute(reference=["1111", "1112", "1113", "1114", "1120"], predictions=["1111", "1113", "1120", "1211", "2111"]) |
|
>>> print(results) |
|
{ |
|
"accuracy": 0.2, |
|
"hierarchical_precision": 0.5, |
|
"hierarchical_recall": 0.7777777777777778, |
|
"hierarchical_fmeasure": 0.6086956521739131, |
|
} |
|
""" |
|
|
|
|
|
ISCO_CSV_MIRROR_URL = ( |
|
"https://storage.googleapis.com/isco-public/tables/ISCO_structure.csv" |
|
) |
|
ILO_ISCO_CSV_URL = ( |
|
"https://www.ilo.org/ilostat-files/ISCO/newdocs-08-2021/ISCO-08/ISCO-08%20EN.csv" |
|
) |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class ISCO_Hierarchical_Accuracy(evaluate.Metric): |
|
"""The ISCO-08 Hierarchical Accuracy Measure""" |
|
|
|
def _info(self): |
|
|
|
return evaluate.MetricInfo( |
|
|
|
module_type="metric", |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"references": datasets.Sequence(datasets.Value("string")), |
|
"predictions": datasets.Sequence(datasets.Value("string")), |
|
} |
|
if self.config_name == "multilabel" |
|
else { |
|
"references": datasets.Value("string"), |
|
"predictions": datasets.Value("string"), |
|
} |
|
), |
|
|
|
homepage="http://module.homepage", |
|
|
|
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], |
|
reference_urls=["http://path.to.reference.url/new_module"], |
|
) |
|
|
|
def create_hierarchy_dict(self, file: str) -> dict: |
|
""" |
|
Creates a dictionary where keys are nodes and values are dictionaries of their parent nodes with distance as weights, |
|
representing the group level hierarchy of the ISCO-08 structure. |
|
|
|
Args: |
|
- file: A string representing the path to the CSV file containing the 4-digit ISCO-08 codes. It can be a local path or a web URL. |
|
|
|
Returns: |
|
- A dictionary where keys are ISCO-08 unit codes and values are dictionaries of their parent codes with distances. |
|
""" |
|
|
|
try: |
|
import requests |
|
import csv |
|
except ImportError as error: |
|
raise error |
|
|
|
isco_hierarchy = {} |
|
|
|
if file.startswith("http://") or file.startswith("https://"): |
|
response = requests.get(file) |
|
lines = response.text.splitlines() |
|
else: |
|
with open(file, newline="") as csvfile: |
|
lines = csvfile.readlines() |
|
|
|
reader = csv.DictReader(lines) |
|
for row in reader: |
|
unit_code = row["unit"].zfill(4) |
|
minor_code = unit_code[0:3] |
|
sub_major_code = unit_code[0:2] |
|
major_code = unit_code[0] |
|
|
|
|
|
weights = {minor_code: 0.75, sub_major_code: 0.5, major_code: 0.25} |
|
|
|
|
|
isco_hierarchy[unit_code] = weights |
|
|
|
return isco_hierarchy |
|
|
|
def find_ancestors(self, node: str, hierarchy: Dict[str, Set[str]]) -> Set[str]: |
|
""" |
|
Find the ancestors of a given node in a hierarchy. |
|
|
|
Args: |
|
node (str): The node for which to find ancestors. |
|
hierarchy (Dict[str, Set[str]]): A dictionary representing the hierarchy, where the keys are nodes and the values are their parents. |
|
|
|
Returns: |
|
Set[str]: A set of ancestors of the given node. |
|
""" |
|
ancestors = set() |
|
nodes_to_visit = [node] |
|
while nodes_to_visit: |
|
current_node = nodes_to_visit.pop() |
|
if current_node in hierarchy: |
|
parents = hierarchy[current_node] |
|
ancestors.update(parents) |
|
nodes_to_visit.extend(parents) |
|
return ancestors |
|
|
|
def extend_with_ancestors(self, classes: set, hierarchy: dict) -> set: |
|
""" |
|
Extend the given set of classes with their ancestors from the hierarchy. |
|
|
|
Args: |
|
classes (set): The set of classes to extend. |
|
hierarchy (dict): The hierarchy of classes. |
|
|
|
Returns: |
|
set: The extended set of classes including their ancestors. |
|
""" |
|
extended_classes = set(classes) |
|
for cls in classes: |
|
ancestors = self.find_ancestors(cls, hierarchy) |
|
extended_classes.update(ancestors) |
|
return extended_classes |
|
|
|
def calculate_hierarchical_precision_recall( |
|
self, |
|
reference_codes: List[str], |
|
predicted_codes: List[str], |
|
hierarchy: Dict[str, Dict[str, float]], |
|
) -> Tuple[float, float]: |
|
""" |
|
Calculates the hierarchical precision and recall given the reference codes, predicted codes, and hierarchy definition. |
|
|
|
Args: |
|
reference_codes (List[str]): The list of reference codes. |
|
predicted_codes (List[str]): The list of predicted codes. |
|
hierarchy (Dict[str, Dict[str, float]]): The hierarchy definition where keys are nodes and values are dictionaries of parent nodes with distances. |
|
|
|
Returns: |
|
Tuple[float, float]: A tuple containing the hierarchical precision and recall floating point values. |
|
""" |
|
extended_real = set() |
|
extended_predicted = set() |
|
|
|
|
|
for code in reference_codes: |
|
extended_real.add(code) |
|
extended_real.update(self.find_ancestors(code, hierarchy)) |
|
|
|
|
|
for code in predicted_codes: |
|
extended_predicted.add(code) |
|
extended_predicted.update(self.find_ancestors(code, hierarchy)) |
|
|
|
|
|
correct_recall = extended_real.intersection(extended_predicted) |
|
|
|
|
|
correct_precision = set() |
|
for code in predicted_codes: |
|
if code in extended_real: |
|
correct_precision.add(code) |
|
correct_precision.update( |
|
self.find_ancestors(code, hierarchy).intersection(extended_real) |
|
) |
|
|
|
|
|
hP = ( |
|
len(correct_precision) / len(extended_predicted) |
|
if extended_predicted |
|
else 0 |
|
) |
|
hR = len(correct_recall) / len(extended_real) if extended_real else 0 |
|
|
|
return hP, hR |
|
|
|
def hierarchical_f_measure(self, hP, hR, beta=1.0): |
|
""" |
|
Calculate the hierarchical F-measure. |
|
|
|
Parameters: |
|
hP (float): The hierarchical precision. |
|
hR (float): The hierarchical recall. |
|
beta (float, optional): The beta value for F-measure calculation. Default is 1.0. |
|
|
|
Returns: |
|
float: The hierarchical F-measure. |
|
""" |
|
if hP + hR == 0: |
|
return 0 |
|
return (beta**2 + 1) * hP * hR / (beta**2 * hP + hR) |
|
|
|
def _download_and_prepare(self, dl_manager): |
|
"""Download external ISCO-08 csv file from the ILO website for creating the hierarchy dictionary.""" |
|
isco_csv = dl_manager.download_and_extract(ISCO_CSV_MIRROR_URL) |
|
print(f"ISCO CSV file downloaded") |
|
self.isco_hierarchy = self.create_hierarchy_dict(isco_csv) |
|
print("Weighted ISCO hierarchy dictionary created as isco_hierarchy") |
|
|
|
|
|
|
|
def _is_valid_code(self, code: str): |
|
|
|
pattern = r"^\d{4}$" |
|
if re.match(pattern, code): |
|
return True |
|
else: |
|
return False |
|
|
|
def _validate_codes(self, codes: list, code_type): |
|
if not all(self._is_valid_code(code) for code in codes): |
|
raise ValueError( |
|
f"All {code_type} labels must start with a 4-digit ISCO-08 code string." |
|
) |
|
|
|
def _compute(self, predictions, references): |
|
""" |
|
Computes the accuracy scores, hierarchical precision, recall, and f-measure. |
|
|
|
Args: |
|
predictions (List[str]): A list of 4-digit ISCO-08 prediction label strings. |
|
references (List[str]): A list of 4-digit ISCO-08 reference label strings. |
|
|
|
Returns: |
|
dict: A dictionary containing the accuracy, hierarchical precision, hierarchical recall, |
|
and hierarchical f-measure scores. |
|
""" |
|
|
|
predictions = [str(p) for p in predictions] |
|
references = [str(r) for r in references] |
|
|
|
if len(predictions[0]) > 4: |
|
|
|
predictions = [str(p.split()[0]) for p in predictions] |
|
|
|
self._validate_codes(predictions, "prediction") |
|
|
|
references = [str(r.split()[0]) for r in references] |
|
self._validate_codes(references, "reference") |
|
|
|
|
|
accuracy = sum(i == j for i, j in zip(predictions, references)) / len( |
|
predictions |
|
) |
|
|
|
hP, hR = self.calculate_hierarchical_precision_recall( |
|
references, predictions, self.isco_hierarchy |
|
) |
|
hF = self.hierarchical_f_measure(hP, hR) |
|
|
|
return { |
|
"accuracy": accuracy, |
|
"hierarchical_precision": hP, |
|
"hierarchical_recall": hR, |
|
"hierarchical_fmeasure": hF, |
|
} |
|
|