def find_ancestors(tree, code): """ Recursively finds ancestors of a given class (e.g., an ISCO-08 code) in a hierarchical JSON structure. Args: - tree: A dictionary representing the hierarchical structure. - code: A string representing the label of the class. Returns: - A list of strings, each representing an ancestor of the input class. """ ancestors = [] current = code while current: parent = tree[current]["parent"] if parent: ancestors.append(parent) current = parent return ancestors def calculate_hierarchical_measures(true_labels, predicted_labels, tree): """ Calculates hierarchical precision, recall, and F-measure in a hierarchical structure. Args: - true_labels: A list of strings representing true class labels. - predicted_labels: A list of strings representing predicted class labels. - tree: A dictionary representing the hierarchical structure. Returns: - hP: A floating point number representing hierarchical precision. - hR: A floating point number representing hierarchical recall. - hF: A floating point number representing hierarchical F-measure. """ extended_true = [set(find_ancestors(tree, code) | {code}) for code in true_labels] extended_pred = [ set(find_ancestors(tree, code) | {code}) for code in predicted_labels ] true_positive = sum(len(t & p) for t, p in zip(extended_true, extended_pred)) predicted = sum(len(p) for p in extended_pred) actual = sum(len(t) for t in extended_true) hP = true_positive / predicted if predicted else 0 hR = true_positive / actual if actual else 0 hF = (2 * hP * hR) / (hP + hR) if (hP + hR) else 0 return hP, hR, hF def hierarchical_f_measure(hP, hR, beta=1.0): """Calculate the hierarchical F-measure.""" if hP + hR == 0: return 0 return (beta**2 + 1) * hP * hR / (beta**2 * hP + hR)