Spaces:
Runtime error
Runtime error
File size: 3,504 Bytes
3f12a86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from langchain.base_language import BaseLanguageModel
from langchain.chains import LLMChain, SequentialChain
from langchain.chat_models import ChatAnthropic
from langchain.chat_models import ChatOpenAI
from langchain.llms import HuggingFaceHub
from langchain.prompts import (
PromptTemplate,
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
class StyleScribble:
example: str
prompt: str
llm: BaseLanguageModel
def __init__(self, example=None, prompt=None, llm=None):
self.example = example
self.prompt = prompt
self.llm = llm
def set_imp_llm(self, model):
if model == 'GPT3':
self.llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
elif model == "GPT4":
self.llm = ChatOpenAI(model_name="gpt-4")
elif model == "Claude":
self.llm = ChatAnthropic()
else:
self.llm = HuggingFaceHub(repo_id=model)
def run(self):
return self.process()
def process(self):
seq_chain = SequentialChain(
chains=[self.get_extract_tone_chain(), self.get_generate_text_chain(self.prompt),
self.get_apply_style_chain()],
input_variables=["text"], verbose=True)
result = seq_chain({'text': self.example, "style": ""})
return str(result.get('result'))
def create_chain(self, chat_prompt, output_key):
return LLMChain(llm=self.llm,
prompt=chat_prompt, output_key=output_key)
def get_extract_tone_chain(self):
template = """Building upon the nuances and distinctive traits in the sample text, establish
a comprehensive style guide that encapsulates the unique tone and writing style present in the sample.
This guide should focus on compelling tactics that foster a sense of connection between readers and
the content. Refrain from discussing the specific theme of the sample text or using it as a direct example.
Instead, formulate your analysis in such a way that it remains abstract, facilitating its application to any
other text that might be inspired by or originate from the sample. This abstract analysis will enable writers to adopt the essence of the style while allowing for versatility across various themes or topics..
"""
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
return self.create_chain(chat_prompt, "style")
def get_generate_text_chain(self, prompt):
template = """Generate a text following the user_request(use same language of the request):
{user_request}
""".replace("{user_request}", prompt)
return self.create_chain(PromptTemplate.from_template(template),
"generated_text")
def get_apply_style_chain(self):
template = """STYLE:
{style}
REWRITE THE TEXT BELLOW APPLYING THE STYLE GUIDE ABOVE(use same language of the request):
{generated_text}
"""
prompt = PromptTemplate.from_template(template=template)
prompt.partial(style="")
return self.create_chain(prompt, "result")
|