Spaces:
Runtime error
Runtime error
Daryl Lim
commited on
Commit
Β·
9637988
1
Parent(s):
e37a2ae
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module provides an interface for classifying images using the ResNet-18 model.
|
3 |
+
The interface allows users to upload an image and receive the top 3 predicted labels.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import spaces
|
8 |
+
import torch
|
9 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
10 |
+
from datasets import load_dataset
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
# Load dataset and get test image
|
14 |
+
dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
|
15 |
+
test_image = dataset["test"]["image"][0]
|
16 |
+
|
17 |
+
# Initialize the image processor and model
|
18 |
+
image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-18")
|
19 |
+
model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-18").to("cuda")
|
20 |
+
|
21 |
+
@spaces.GPU
|
22 |
+
def predict(image: Image, top_k: int = 3) -> dict:
|
23 |
+
"""
|
24 |
+
Predicts the top 'top_k' labels for an image using the ResNet-18 model.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
image (Image): The input image as a PIL Image object.
|
28 |
+
top_k (int): The number of top predictions to return.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
dict: A dictionary with the top 'top_k' labels and their probabilities.
|
32 |
+
"""
|
33 |
+
inputs = image_processor(image, return_tensors="pt").to("cuda")
|
34 |
+
with torch.no_grad():
|
35 |
+
logits = model(**inputs).logits
|
36 |
+
|
37 |
+
# Apply softmax to logits to get probabilities
|
38 |
+
probabilities = torch.softmax(logits, dim=-1)
|
39 |
+
|
40 |
+
# Get the top 'top_k' probabilities and their corresponding indices
|
41 |
+
top_k_probs, top_k_indices = torch.topk(input=probabilities, k=top_k, dim=-1)
|
42 |
+
|
43 |
+
# Map the indices to labels and probabilities
|
44 |
+
predicted_labels = {
|
45 |
+
model.config.id2label[idx.item()]: prob.item()
|
46 |
+
for idx, prob in zip(top_k_indices[0], top_k_probs[0])
|
47 |
+
}
|
48 |
+
|
49 |
+
return predicted_labels
|
50 |
+
|
51 |
+
# Define the Gradio interface
|
52 |
+
demo = gr.Interface(
|
53 |
+
fn=predict,
|
54 |
+
inputs=gr.Image(type="pil"),
|
55 |
+
outputs=gr.Label(num_top_classes=3),
|
56 |
+
title="Classifying Images with ResNet-18",
|
57 |
+
description="Upload an image to predict the top 3 labels.",
|
58 |
+
examples=[test_image]
|
59 |
+
)
|
60 |
+
|
61 |
+
# Launch the Gradio interface
|
62 |
+
demo.launch()
|