Spaces:
Running
Running
updated model
Browse files- model.ipynb +273 -0
- model.pkl +2 -2
model.ipynb
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "FDfI95Sh1lW0"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Is it Huggable?\n",
|
10 |
+
"*Classify objects as huggable or not.*\n",
|
11 |
+
"\n",
|
12 |
+
"This notebook has steps to make the model.\n",
|
13 |
+
"\n",
|
14 |
+
"Just want to play? Use directly on the [website](https://daspartho.github.io/is-it-huggable)."
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"metadata": {
|
20 |
+
"id": "r-GyBdvhzfY2"
|
21 |
+
},
|
22 |
+
"source": [
|
23 |
+
"### Install required libraries"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"metadata": {
|
30 |
+
"id": "CQdd5Egc-FQV"
|
31 |
+
},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"!pip install -Uqq fastai duckduckgo_search"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "markdown",
|
39 |
+
"metadata": {
|
40 |
+
"id": "vgvpU91p0ERn"
|
41 |
+
},
|
42 |
+
"source": [
|
43 |
+
"### Import modules required"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": 2,
|
49 |
+
"metadata": {
|
50 |
+
"id": "BD7-yF0l-Y4h"
|
51 |
+
},
|
52 |
+
"outputs": [],
|
53 |
+
"source": [
|
54 |
+
"from duckduckgo_search import ddg_images\n",
|
55 |
+
"from fastcore.all import *\n",
|
56 |
+
"from fastdownload import download_url\n",
|
57 |
+
"from fastai.vision.all import *"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "markdown",
|
62 |
+
"metadata": {
|
63 |
+
"id": "WKZC9jY_zOfx"
|
64 |
+
},
|
65 |
+
"source": [
|
66 |
+
"### Use DuckDuckGo to search for images of examples of the two groups"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": null,
|
72 |
+
"metadata": {
|
73 |
+
"id": "hqnqTAXWCAn6"
|
74 |
+
},
|
75 |
+
"outputs": [],
|
76 |
+
"source": [
|
77 |
+
"def search_images(term, max_images=50):\n",
|
78 |
+
" print(f\"Searching for '{term}'\")\n",
|
79 |
+
" return L(ddg_images(term, max_results=max_images)).itemgot('image')\n",
|
80 |
+
"\n",
|
81 |
+
"path = Path('huggable_or_not')\n",
|
82 |
+
"\n",
|
83 |
+
"# examples of both groups\n",
|
84 |
+
"categories={\n",
|
85 |
+
" 'huggable':['plushie', 'pillow' , 'ballon', 'dog', 'cat', 'bunny', 'snowman', 'bed', 'sofa', 'people', 'baby', 'cloud', 'dolphin', 'horse', 'cow', 'sheep'], \n",
|
86 |
+
" 'not huggable':['chainsaw', 'sword', 'cactus', 'barbwire', 'bear', 'snake', 'lion', 'shark', 'fire','knive','fork', 'dinosaur', 'crocodile', 'spider', 'bees', 'porcupine']\n",
|
87 |
+
" }\n",
|
88 |
+
"\n",
|
89 |
+
"for category in categories:\n",
|
90 |
+
" dest = (path/category)\n",
|
91 |
+
" dest.mkdir(exist_ok=True, parents=True)\n",
|
92 |
+
" for example in categories[category]:\n",
|
93 |
+
" download_images(dest, urls=search_images(f'{example} photo'))\n",
|
94 |
+
" resize_images(path/category, max_size=400, dest=path/category)"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "markdown",
|
99 |
+
"metadata": {
|
100 |
+
"id": "Bpsp4MTGxBWl"
|
101 |
+
},
|
102 |
+
"source": [
|
103 |
+
"### Remove photos that didn't download correctly."
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": null,
|
109 |
+
"metadata": {
|
110 |
+
"id": "FzuHMc_qD0UO"
|
111 |
+
},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"failed = verify_images(get_image_files(path))\n",
|
115 |
+
"failed.map(Path.unlink)\n",
|
116 |
+
"len(failed)"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "markdown",
|
121 |
+
"metadata": {
|
122 |
+
"id": "eFFr_VE45ihe"
|
123 |
+
},
|
124 |
+
"source": [
|
125 |
+
"### Preparing the data for training"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": null,
|
131 |
+
"metadata": {
|
132 |
+
"id": "wzSeghRAFYqF"
|
133 |
+
},
|
134 |
+
"outputs": [],
|
135 |
+
"source": [
|
136 |
+
"dls = DataBlock(\n",
|
137 |
+
" blocks=(ImageBlock, CategoryBlock), # inputs to our model are images, and the outputs are categories\n",
|
138 |
+
" get_items=get_image_files, \n",
|
139 |
+
" splitter=RandomSplitter(valid_pct=0.2, seed=42), # Split the data into training and validation sets randomly, using 20% of the data for the validation set\n",
|
140 |
+
" get_y=parent_label, # The labels is the name of the parent of each file\n",
|
141 |
+
" item_tfms=RandomResizedCrop(224, min_scale=0.3), # picks a random scaled crop of an image and resize it to 224x224 pixels\n",
|
142 |
+
" batch_tfms=aug_transforms() # applies augmentations to an entire batch\n",
|
143 |
+
").dataloaders(path, bs=32)\n",
|
144 |
+
"\n",
|
145 |
+
"dls.show_batch()"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "markdown",
|
150 |
+
"metadata": {
|
151 |
+
"id": "y-FNWY-3zEF3"
|
152 |
+
},
|
153 |
+
"source": [
|
154 |
+
"### Fine-tune a pretrained neural network to recognise these two groups"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": null,
|
160 |
+
"metadata": {
|
161 |
+
"id": "5ao0lw2cG2WP"
|
162 |
+
},
|
163 |
+
"outputs": [],
|
164 |
+
"source": [
|
165 |
+
"learn = vision_learner(dls, resnet34, metrics=error_rate)\n",
|
166 |
+
"learn.fine_tune(10)"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "markdown",
|
171 |
+
"metadata": {
|
172 |
+
"id": "0wZAFpxi7L6z"
|
173 |
+
},
|
174 |
+
"source": [
|
175 |
+
"### Show predictions the model made on images in validation set"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": null,
|
181 |
+
"metadata": {
|
182 |
+
"id": "aE0vp3jeVtBT"
|
183 |
+
},
|
184 |
+
"outputs": [],
|
185 |
+
"source": [
|
186 |
+
"learn.show_results()"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "markdown",
|
191 |
+
"metadata": {
|
192 |
+
"id": "gFpqdZr87ZSS"
|
193 |
+
},
|
194 |
+
"source": [
|
195 |
+
"### Download an image from internet for trying the model"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": null,
|
201 |
+
"metadata": {
|
202 |
+
"id": "C0kfX6QUMRoN"
|
203 |
+
},
|
204 |
+
"outputs": [],
|
205 |
+
"source": [
|
206 |
+
"term='penguin' # change the search term\n",
|
207 |
+
"download_url(search_images(term, max_images=1)[0], 'test.jpg', show_progress=False)\n",
|
208 |
+
"Image.open('test.jpg').to_thumb(256,256)"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "markdown",
|
213 |
+
"metadata": {
|
214 |
+
"id": "AgOQPzTX7q3o"
|
215 |
+
},
|
216 |
+
"source": [
|
217 |
+
"### Trying the model on the downloaded image"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": null,
|
223 |
+
"metadata": {
|
224 |
+
"id": "sz1dVCZMHz3N"
|
225 |
+
},
|
226 |
+
"outputs": [],
|
227 |
+
"source": [
|
228 |
+
"predict,n,prob = learn.predict(PILImage.create('test.jpg'))\n",
|
229 |
+
"print(f\"It's {predict}!\")\n",
|
230 |
+
"perc = prob[n]*100\n",
|
231 |
+
"print(f\"I'm {perc:.02f}% confident.\")"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "markdown",
|
236 |
+
"metadata": {
|
237 |
+
"id": "lSSjWJq874WE"
|
238 |
+
},
|
239 |
+
"source": [
|
240 |
+
"### Export the model"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"cell_type": "code",
|
245 |
+
"execution_count": 94,
|
246 |
+
"metadata": {
|
247 |
+
"id": "ae2bc6ac"
|
248 |
+
},
|
249 |
+
"outputs": [],
|
250 |
+
"source": [
|
251 |
+
"learn.export('model.pkl')"
|
252 |
+
]
|
253 |
+
}
|
254 |
+
],
|
255 |
+
"metadata": {
|
256 |
+
"accelerator": "GPU",
|
257 |
+
"colab": {
|
258 |
+
"collapsed_sections": [],
|
259 |
+
"name": "model.ipynb",
|
260 |
+
"provenance": []
|
261 |
+
},
|
262 |
+
"gpuClass": "standard",
|
263 |
+
"kernelspec": {
|
264 |
+
"display_name": "Python 3",
|
265 |
+
"name": "python3"
|
266 |
+
},
|
267 |
+
"language_info": {
|
268 |
+
"name": "python"
|
269 |
+
}
|
270 |
+
},
|
271 |
+
"nbformat": 4,
|
272 |
+
"nbformat_minor": 0
|
273 |
+
}
|
model.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e13d90feb325569e3ac1ce4371ce77195222ac28f044a97b1620aef8f70efe2
|
3 |
+
size 87503717
|