Spaces:
Runtime error
Runtime error
Commit
·
2f12a3f
1
Parent(s):
e6ce204
update inference
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.3.1
|
|
|
1 |
---
|
2 |
+
title: Realtime S2T MT Demo
|
3 |
+
emoji: 🥑
|
4 |
+
colorFrom: blue
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.3.1
|
app.py
CHANGED
@@ -77,65 +77,13 @@ def speech2text_vi(audio):
|
|
77 |
return beam_search_output
|
78 |
|
79 |
|
80 |
-
"""English speech2text"""
|
81 |
-
nltk.download("punkt")
|
82 |
-
# Loading the model and the tokenizer
|
83 |
-
model_name = "facebook/s2t-small-librispeech-asr"
|
84 |
-
eng_tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
85 |
-
eng_model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
86 |
-
|
87 |
-
def load_data(input_file):
|
88 |
-
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
|
89 |
-
"""
|
90 |
-
# read the file
|
91 |
-
speech, sample_rate = librosa.load(input_file)
|
92 |
-
# make it 1-D
|
93 |
-
if len(speech.shape) > 1:
|
94 |
-
speech = speech[:, 0] + speech[:, 1]
|
95 |
-
# Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
96 |
-
if sample_rate != 16000:
|
97 |
-
speech = librosa.resample(speech, sample_rate, 16000)
|
98 |
-
return speech
|
99 |
-
|
100 |
-
def correct_casing(input_sentence):
|
101 |
-
""" This function is for correcting the casing of the generated transcribed text
|
102 |
-
"""
|
103 |
-
sentences = nltk.sent_tokenize(input_sentence)
|
104 |
-
return (' '.join([s.replace(s[0], s[0].capitalize(), 1) for s in sentences]))
|
105 |
-
|
106 |
-
|
107 |
-
def speech2text_en(input_file):
|
108 |
-
"""This function generates transcripts for the provided audio input
|
109 |
-
"""
|
110 |
-
speech = load_data(input_file)
|
111 |
-
# Tokenize
|
112 |
-
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
113 |
-
# Take logits
|
114 |
-
logits = eng_model(input_values).logits
|
115 |
-
# Take argmax
|
116 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
117 |
-
# Get the words from predicted word ids
|
118 |
-
transcription = eng_tokenizer.decode(predicted_ids[0])
|
119 |
-
# Output is all upper case
|
120 |
-
transcription = correct_casing(transcription.lower())
|
121 |
-
return transcription
|
122 |
-
|
123 |
-
|
124 |
"""Machine translation"""
|
125 |
vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT"
|
126 |
-
envi_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-en-vi_PhoMT"
|
127 |
vien_translator = pipeline("translation", model=vien_model_checkpoint)
|
128 |
-
envi_translator = pipeline("translation", model=envi_model_checkpoint)
|
129 |
-
|
130 |
|
131 |
def translate_vi2en(Vietnamese):
|
132 |
return vien_translator(Vietnamese)[0]['translation_text']
|
133 |
|
134 |
-
def translate_en2vi(English):
|
135 |
-
return envi_translator(English)[0]['translation_text']
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
|
140 |
""" Inference"""
|
141 |
def inference_vien(audio):
|
@@ -143,46 +91,6 @@ def inference_vien(audio):
|
|
143 |
en_text = translate_vi2en(vi_text)
|
144 |
return vi_text, en_text
|
145 |
|
146 |
-
def inference_envi(audio):
|
147 |
-
en_text = speech2text_en(audio)
|
148 |
-
vi_text = translate_en2vi(en_text)
|
149 |
-
return en_text, vi_text
|
150 |
-
|
151 |
-
def transcribe_vi(audio, state_vi="", state_en=""):
|
152 |
-
ds = speech_file_to_array_fn(audio.name)
|
153 |
-
# infer model
|
154 |
-
input_values = processor(
|
155 |
-
ds["speech"],
|
156 |
-
sampling_rate=ds["sampling_rate"],
|
157 |
-
return_tensors="pt"
|
158 |
-
).input_values
|
159 |
-
# decode ctc output
|
160 |
-
logits = vi_model(input_values).logits[0]
|
161 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
162 |
-
greedy_search_output = processor.decode(pred_ids)
|
163 |
-
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
164 |
-
state_vi += beam_search_output + " "
|
165 |
-
en_text = translate_vi2en(beam_search_output)
|
166 |
-
state_en += en_text + " "
|
167 |
-
return state_vi, state_en
|
168 |
-
|
169 |
-
def transcribe_en(audio, state_en="", state_vi=""):
|
170 |
-
speech = load_data(audio)
|
171 |
-
# Tokenize
|
172 |
-
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
173 |
-
# Take logits
|
174 |
-
logits = eng_model(input_values).logits
|
175 |
-
# Take argmax
|
176 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
177 |
-
# Get the words from predicted word ids
|
178 |
-
transcription = eng_tokenizer.decode(predicted_ids[0])
|
179 |
-
# Output is all upper case
|
180 |
-
transcription = correct_casing(transcription.lower())
|
181 |
-
state_en += transcription + "+"
|
182 |
-
vi_text = translate_en2vi(transcription)
|
183 |
-
state_vi += vi_text + "+"
|
184 |
-
return state_en, state_vi
|
185 |
-
|
186 |
def transcribe_vi_1(audio, state_en=""):
|
187 |
ds = speech_file_to_array_fn(audio.name)
|
188 |
# infer model
|
@@ -200,69 +108,23 @@ def transcribe_vi_1(audio, state_en=""):
|
|
200 |
state_en += en_text + " "
|
201 |
return state_en, state_en
|
202 |
|
203 |
-
def transcribe_en_1(audio, state_vi=""):
|
204 |
-
speech = load_data(audio)
|
205 |
-
# Tokenize
|
206 |
-
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
207 |
-
# Take logits
|
208 |
-
logits = eng_model(input_values).logits
|
209 |
-
# Take argmax
|
210 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
211 |
-
# Get the words from predicted word ids
|
212 |
-
transcription = eng_tokenizer.decode(predicted_ids[0])
|
213 |
-
# Output is all upper case
|
214 |
-
transcription = correct_casing(transcription.lower())
|
215 |
-
vi_text = translate_en2vi(transcription)
|
216 |
-
state_vi += vi_text + "+"
|
217 |
-
return state_vi, state_vi
|
218 |
-
|
219 |
"""Gradio demo"""
|
220 |
-
|
221 |
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
222 |
"Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.",
|
223 |
"Nếu như một câu nói có thể khiến em vui."]
|
224 |
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']]
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
"state",
|
241 |
-
],
|
242 |
-
outputs= [
|
243 |
-
"text",
|
244 |
-
"state",
|
245 |
-
|
246 |
-
],
|
247 |
-
examples=vi_example_voice,
|
248 |
-
live=True).launch()
|
249 |
-
|
250 |
-
|
251 |
-
with gr.Tabs():
|
252 |
-
with gr.TabItem("En-Vi Realtime Translation"):
|
253 |
-
gr.Interface(
|
254 |
-
fn=transcribe_en_1,
|
255 |
-
inputs=[
|
256 |
-
gr.Audio(source="microphone", label="Input English Audio", type="filepath", streaming=True),
|
257 |
-
"state",
|
258 |
-
],
|
259 |
-
outputs= [
|
260 |
-
"text",
|
261 |
-
"state",
|
262 |
-
|
263 |
-
],
|
264 |
-
examples=en_example_voice,
|
265 |
-
live=True).launch()
|
266 |
-
|
267 |
-
if __name__ == "__main__":
|
268 |
-
demo.launch()
|
|
|
77 |
return beam_search_output
|
78 |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
"""Machine translation"""
|
81 |
vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT"
|
|
|
82 |
vien_translator = pipeline("translation", model=vien_model_checkpoint)
|
|
|
|
|
83 |
|
84 |
def translate_vi2en(Vietnamese):
|
85 |
return vien_translator(Vietnamese)[0]['translation_text']
|
86 |
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
""" Inference"""
|
89 |
def inference_vien(audio):
|
|
|
91 |
en_text = translate_vi2en(vi_text)
|
92 |
return vi_text, en_text
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
def transcribe_vi_1(audio, state_en=""):
|
95 |
ds = speech_file_to_array_fn(audio.name)
|
96 |
# infer model
|
|
|
108 |
state_en += en_text + " "
|
109 |
return state_en, state_en
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
"""Gradio demo"""
|
|
|
112 |
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
113 |
"Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.",
|
114 |
"Nếu như một câu nói có thể khiến em vui."]
|
115 |
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']]
|
116 |
|
117 |
+
with gr.TabItem("Vi-En Realtime Translation"):
|
118 |
+
gr.Interface(
|
119 |
+
fn=transcribe_vi_1,
|
120 |
+
inputs=[
|
121 |
+
gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=True),
|
122 |
+
"state",
|
123 |
+
],
|
124 |
+
outputs= [
|
125 |
+
"text",
|
126 |
+
"state",
|
127 |
+
|
128 |
+
],
|
129 |
+
examples=vi_example_voice,
|
130 |
+
live=True).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|