davehusk commited on
Commit
efc589c
verified
1 Parent(s): 1cbb787

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -2
app.py CHANGED
@@ -1,3 +1,63 @@
1
- import gradio as gr
 
 
2
 
3
- gr.load("models/hjhj3168/Llama-3-8b-Orthogonalized-exl2").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from scipy.integrate import solve_ivp
3
+ import matplotlib.pyplot as plt
4
 
5
+ class SelfAwareNetwork:
6
+ def __init__(self, num_neurons, learning_rate):
7
+ self.num_neurons = num_neurons
8
+ self.learning_rate = learning_rate
9
+ self.weights = np.random.rand(num_neurons)
10
+ self.state = np.zeros(num_neurons)
11
+
12
+ def activation_function(self, x, t, n):
13
+ hbar = 1.0545718e-34 # Reduced Planck constant in J路s
14
+ omega = 1/np.sqrt(137) # Angular frequency related to fine-structure constant
15
+ term1 = hbar * omega * (n + 0.5)
16
+ term2 = np.sin(omega * x + np.pi/4) * np.exp(-t)
17
+ return term1 + term2
18
+
19
+ def neuron_dynamics(self, t, y):
20
+ n = np.arange(self.num_neurons)
21
+ dydt = -y + self.activation_function(y, t, n)
22
+ return dydt
23
+
24
+ def update_weights(self, state):
25
+ self.weights += self.learning_rate * state
26
+
27
+ def solve_dynamics(self, t_span, y0):
28
+ sol = solve_ivp(self.neuron_dynamics, t_span, y0, method='RK45', vectorized=False)
29
+ return sol.t, sol.y
30
+
31
+ def evaluate_performance(self, target_state):
32
+ error = np.linalg.norm(self.state - target_state)
33
+ return error
34
+
35
+ def adjust_learning_rate(self, performance_metric):
36
+ if performance_metric > 0.1:
37
+ self.learning_rate *= 0.9
38
+ else:
39
+ self.learning_rate *= 1.1
40
+
41
+ def self_optimize(self, target_state, t_span, y0):
42
+ t, y = self.solve_dynamics(t_span, y0)
43
+ self.state = y[:, -1]
44
+ performance = self.evaluate_performance(target_state)
45
+ self.adjust_learning_rate(performance)
46
+ self.update_weights(self.state)
47
+
48
+ def plot_state_evolution(self, t, y):
49
+ plt.plot(t, y.T)
50
+ plt.xlabel('Time')
51
+ plt.ylabel('Neuron States')
52
+ plt.title('State Evolution of Neurons')
53
+ plt.show()
54
+
55
+ # Example usage
56
+ network = SelfAwareNetwork(num_neurons=3, learning_rate=0.01) # Reduced the number of neurons
57
+ t_span = (0, 5) # Shortened the time span
58
+ y0 = np.random.rand(3) # Adjusted for the reduced number of neurons
59
+ target_state = np.ones(3)
60
+
61
+ network.self_optimize(target_state, t_span, y0)
62
+ t, y = network.solve_dynamics(t_span, y0)
63
+ network.plot_state_evolution(t, y)