Spaces:
Runtime error
Runtime error
import torch | |
from PIL import Image | |
from diffusers import ControlNetModel, DiffusionPipeline | |
from diffusers.utils import load_image | |
import gradio as gr | |
import warnings | |
warnings.filterwarnings("ignore") | |
def resize_for_condition_image(input_image: Image, resolution: int): | |
input_image = input_image.convert("RGB") | |
W, H = input_image.size | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(round(H / 64.0)) * 64 | |
W = int(round(W / 64.0)) * 64 | |
img = input_image.resize((W, H), resample=Image.LANCZOS) | |
return img | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
controlnet = ControlNetModel.from_pretrained('lllyasviel/control_v11f1e_sd15_tile', | |
torch_dtype=torch.float16) | |
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", | |
custom_pipeline="stable_diffusion_controlnet_img2img", | |
controlnet=controlnet, | |
torch_dtype=torch.float16).to(device) | |
pipe.enable_xformers_memory_efficient_attention() | |
source_image = load_image('https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png') | |
def super_esr(source_image,prompt,negative_prompt,strength,seed,num_inference_steps): | |
condition_image = resize_for_condition_image(source_image, 1024) | |
image = pipe(prompt=prompt,#"best quality", | |
negative_prompt="blur, lowres, bad anatomy, bad hands, cropped, worst quality", | |
image=condition_image, | |
controlnet_conditioning_image=condition_image, | |
width=condition_image.size[0], | |
height=condition_image.size[1], | |
strength=1.0, | |
generator=seed, | |
num_inference_steps=num_inference_steps, | |
).image | |
print(source_image,prompt,negative_prompt,strength,seed,num_inference_steps) | |
return source_image | |
#define laund take input nsame as super_esr function | |
def launch(): | |
inputs=[ | |
gr.inputs.Image(type="pil",label="Source Image"), | |
gr.inputs.Textbox(lines=2,label="Prompt"), | |
gr.inputs.Textbox(lines=2,label="Negative Prompt"), | |
gr.inputs.Slider(minimum=0,maximum=1,label="Strength"), | |
gr.inputs.Slider(minimum=0,maximum=100,label="Seed"), | |
gr.inputs.Slider(minimum=0,maximum=100,label="Num Inference Steps") | |
] | |
outputs=[ | |
gr.outputs.Image(type="pil",label="Output Image") | |
] | |
title="Super ESR" | |
description="Super ESR is a super resolution model that uses diffusion to generate high resolution images from low resolution images" | |
examples=[ | |
["https://i.imgur.com/9IqyX1F.png","best quality","blur, lowres, bad anatomy, bad hands, cropped, worst quality",1.0,0,100], | |
["https://i.imgur.com/9IqyX1F.png","best quality","blur, lowres, bad anatomy, bad hands, cropped, worst quality",1.0,0,100], | |
] | |
gr.Interface(fn=super_esr,inputs=inputs,outputs=outputs,title=title,description=description,examples=examples).launch(share=True) | |
launch() |