import torch from PIL import Image from diffusers import ControlNetModel, DiffusionPipeline from diffusers.utils import load_image import gradio as gr import warnings warnings.filterwarnings("ignore") def resize_for_condition_image(input_image: Image, resolution: int): input_image = input_image.convert("RGB") W, H = input_image.size k = float(resolution) / min(H, W) H *= k W *= k H = int(round(H / 64.0)) * 64 W = int(round(W / 64.0)) * 64 img = input_image.resize((W, H), resample=Image.LANCZOS) return img device = torch.device("cuda" if torch.cuda.is_available() else "cpu") controlnet = ControlNetModel.from_pretrained('lllyasviel/control_v11f1e_sd15_tile', torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_controlnet_img2img", controlnet=controlnet, torch_dtype=torch.float16).to(device) pipe.enable_xformers_memory_efficient_attention() source_image = load_image('https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png') def super_esr(source_image,prompt,negative_prompt,strength,seed,num_inference_steps): condition_image = resize_for_condition_image(source_image, 1024) image = pipe(prompt=prompt,#"best quality", negative_prompt="blur, lowres, bad anatomy, bad hands, cropped, worst quality", image=condition_image, controlnet_conditioning_image=condition_image, width=condition_image.size[0], height=condition_image.size[1], strength=1.0, generator=seed, num_inference_steps=num_inference_steps, ).image print(source_image,prompt,negative_prompt,strength,seed,num_inference_steps) return source_image #define laund take input nsame as super_esr function def launch(): inputs=[ gr.inputs.Image(type="pil",label="Source Image"), gr.inputs.Textbox(lines=2,label="Prompt"), gr.inputs.Textbox(lines=2,label="Negative Prompt"), gr.inputs.Slider(minimum=0,maximum=1,label="Strength"), gr.inputs.Slider(minimum=0,maximum=100,label="Seed"), gr.inputs.Slider(minimum=0,maximum=100,label="Num Inference Steps") ] outputs=[ gr.outputs.Image(type="pil",label="Output Image") ] title="Super ESR" description="Super ESR is a super resolution model that uses diffusion to generate high resolution images from low resolution images" examples=[ ["https://i.imgur.com/9IqyX1F.png","best quality","blur, lowres, bad anatomy, bad hands, cropped, worst quality",1.0,0,100], ["https://i.imgur.com/9IqyX1F.png","best quality","blur, lowres, bad anatomy, bad hands, cropped, worst quality",1.0,0,100], ] gr.Interface(fn=super_esr,inputs=inputs,outputs=outputs,title=title,description=description,examples=examples).launch(share=True) launch()