davidpengg commited on
Commit
fa26127
·
1 Parent(s): 56e2a81
app.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from pytube import YouTube
4
+
5
+ from pdb import set_trace
6
+
7
+ from colorizer import colorize_vid
8
+ from dcgan import *
9
+
10
+ # ================================
11
+
12
+ # EXAMPLE_FPS = "Same as original"
13
+ examples = [
14
+ ["examples/1_falcon.mp4", "modelv2", "Same as original"], # 4:21
15
+ ["examples/2_mughal.mp4", "modelv1", 12], # 4:30
16
+ ["examples/3_wizard.mp4", "modelv1", 6], # 7 min
17
+ ["examples/4_elgar.mp4", "modelv2", 6] # 22 min
18
+ ]
19
+
20
+ model_choices = [
21
+ "modelv2",
22
+ "modelv1",
23
+ ]
24
+
25
+ loaded_models = {}
26
+ for model_weights in model_choices:
27
+ model = torch.load(f"{model_weights}.pth", map_location=torch.device('cpu'))
28
+ model.eval() # also done in colorizer
29
+ loaded_models[model_weights] = model
30
+
31
+
32
+ def colorize_video(path_video, chosen_model, chosen_fps, start='', end=''):
33
+ if not path_video:
34
+ return
35
+ return colorize_vid(
36
+ path_video,
37
+ loaded_models[chosen_model],
38
+ chosen_fps,
39
+ start,
40
+ end
41
+ )
42
+
43
+
44
+ def download_youtube(url):
45
+ try:
46
+ yt = YouTube(url)
47
+ streams = yt.streams.filter(
48
+ progressive=True,
49
+ file_extension='mp4').order_by('resolution')
50
+ return streams[0].download()
51
+ except BaseException:
52
+ raise Exception("Invalid URL or Video Unavailable")
53
+
54
+
55
+ app = gr.Blocks()
56
+ with app:
57
+ gr.Markdown("# <p align='center'>Movie and Video Colorization</p>")
58
+ gr.Markdown(
59
+ """
60
+ <p style='text-align: center'>
61
+ Colorize black-and-white movies or videos with a DCGAN-based model!
62
+ <br>
63
+ Project by David Peng, Annie Lin, Adam Zapatka, and Maggy Lambo.
64
+ <p>
65
+ """
66
+ )
67
+
68
+ gr.Markdown("### Step 1: Choose a YouTube video (or upload locally below)")
69
+
70
+ youtube_url = gr.Textbox(label="YouTube Video URL")
71
+
72
+ youtube_url_btn = gr.Button(value="Extract YouTube Video")
73
+
74
+ with gr.Row():
75
+ gr.Markdown("### Step 2: Adjust settings")
76
+ gr.Markdown("### Step 3: Hit \"Colorize\"")
77
+ with gr.Row():
78
+ bw_video = gr.Video(label="Black-and-White Video")
79
+ colorized_video = gr.Video(label="Colorized Video")
80
+ with gr.Row():
81
+ with gr.Column():
82
+ with gr.Row():
83
+ start_time = gr.Text(
84
+ label="Start Time (hh:mm:ss or blank for original)", value='')
85
+ end_time = gr.Text(
86
+ label="End Time (hh:mm:ss or blank for original)", value='')
87
+ with gr.Column():
88
+ bw_video_btn = gr.Button(value="Colorize", variant="primary")
89
+ with gr.Row():
90
+ with gr.Column():
91
+ model_dropdown = gr.Dropdown(
92
+ model_choices,
93
+ value=model_choices[0],
94
+ label="Model"
95
+ )
96
+
97
+ fps_dropdown = gr.Dropdown(
98
+ [3, 6, 12, 24, 30, "Same as original"],
99
+ value=6,
100
+ label="FPS of Colorized Video"
101
+ )
102
+
103
+ gr.Markdown(
104
+ """
105
+ #### Colorization Notes
106
+ - Leave start, end times blank to colorize the entire video
107
+ - To lower colorization time, you can decrease FPS, resolution, or duration
108
+ - *modelv2* tends to color videos orange and sepia
109
+ - *modelv1* tends to color videos with a variety of colors
110
+ - *modelv2* and *modelv1* use the same modified DCGAN architecture but differ in results because of randomization in training
111
+
112
+ #### More Reading
113
+ - <a href='https://towardsdatascience.com/colorizing-black-white-images-with-u-net-and-conditional-gan-a-tutorial-81b2df111cd8' target='_blank'>Colorizing black & white images with U-Net and conditional GAN</a>
114
+ - <a href='https://arxiv.org/abs/1803.05400' target='_blank'>Image Colorization with Generative Adversarial Networks</a>
115
+ """
116
+ )
117
+ with gr.Column():
118
+ gr.Examples(
119
+ examples=examples,
120
+ inputs=[bw_video, model_dropdown, fps_dropdown],
121
+ outputs=[colorized_video],
122
+ fn=colorize_video,
123
+ cache_examples=True,
124
+ )
125
+
126
+ youtube_url_btn.click(
127
+ download_youtube,
128
+ inputs=youtube_url,
129
+ outputs=bw_video
130
+ )
131
+
132
+ bw_video_btn.click(
133
+ colorize_video,
134
+ inputs=[bw_video, model_dropdown, fps_dropdown, start_time, end_time],
135
+ outputs=colorized_video
136
+ )
137
+
138
+ app.launch()
colorizer.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchvision import transforms
3
+
4
+ import numpy as np
5
+ from skimage.color import rgb2lab, lab2rgb
6
+ import skimage.transform
7
+ from PIL import Image
8
+
9
+ import os
10
+ from tqdm import tqdm
11
+ from moviepy.editor import VideoFileClip, AudioFileClip
12
+ from moviepy.tools import cvsecs
13
+ import cv2
14
+
15
+ from pdb import set_trace
16
+
17
+
18
+ def lab_to_rgb(L, ab):
19
+ """
20
+ Takes a batch of images
21
+ """
22
+ L = (L + 1.) * 50.
23
+ ab = ab * 110.
24
+ Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
25
+ rgb_imgs = []
26
+ for img in Lab:
27
+ img_rgb = lab2rgb(img)
28
+ rgb_imgs.append(img_rgb)
29
+ return np.stack(rgb_imgs, axis=0)
30
+
31
+
32
+ SIZE = 256
33
+
34
+
35
+ def get_L(img):
36
+ img = transforms.Resize(
37
+ (SIZE, SIZE), transforms.InterpolationMode.BICUBIC)(img)
38
+ img = np.array(img)
39
+ img_lab = rgb2lab(img).astype("float32")
40
+ img_lab = transforms.ToTensor()(img_lab)
41
+ L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1
42
+
43
+ return L
44
+
45
+
46
+ def get_predictions(model, L):
47
+ # model.L = L.to(model.device)
48
+ model.eval()
49
+ with torch.no_grad():
50
+ model.L = L.to(torch.device('cpu'))
51
+ model.forward()
52
+ fake_color = model.fake_color.detach()
53
+ fake_imgs = lab_to_rgb(L, fake_color)
54
+
55
+ return fake_imgs
56
+
57
+
58
+ def colorize_img(model, img):
59
+ L = get_L(img)
60
+ L = L[None] # put in list
61
+ fake_imgs = get_predictions(model, L)
62
+ fake_img = fake_imgs[0] # get out of list
63
+ resized_fake_img = skimage.transform.resize(
64
+ fake_img, img.size[::-1]) # reshape to original size
65
+
66
+ return resized_fake_img
67
+
68
+
69
+ def valid_start_end(duration, start_input, end_input):
70
+ start = start_input
71
+ end = end_input
72
+ if start == '':
73
+ start = 0
74
+ if end == '':
75
+ end = duration
76
+
77
+ try:
78
+ start = cvsecs(start)
79
+ end = cvsecs(end)
80
+ except BaseException:
81
+ # start, end aren't actual time values.
82
+ raise Exception("Invalid start, end values")
83
+
84
+ # make it minimal maximum length
85
+ start = max(start, 0)
86
+ end = min(duration, end)
87
+
88
+ # start must be less than end
89
+ if start >= end:
90
+ raise Exception("Start must be before end.")
91
+
92
+ return start, end
93
+
94
+
95
+ def colorize_vid(path_input, model, fps, start_input, end_input):
96
+
97
+ original_video = VideoFileClip(path_input)
98
+
99
+ # validate start, end
100
+ start, end = valid_start_end(
101
+ original_video.duration, start_input, end_input)
102
+
103
+ input_video = original_video.subclip(start, end)
104
+
105
+ if isinstance(fps, int):
106
+ used_fps = fps
107
+ nframes = np.round(fps * input_video.duration)
108
+ else:
109
+ used_fps = input_video.fps
110
+ nframes = input_video.reader.nframes
111
+ print(
112
+ f"Colorizing output with FPS: {fps}, nframes: {nframes}, resolution: {input_video.size}.")
113
+
114
+ frames = input_video.iter_frames(fps=used_fps)
115
+
116
+ # create tmp path that is same as input path but with '_tmp.[suffix]'
117
+ base_path, suffix = os.path.splitext(path_input)
118
+ path_video_tmp = base_path + "_tmp" + suffix
119
+
120
+ # create video writer for output
121
+ size = input_video.size
122
+ out = cv2.VideoWriter(
123
+ path_video_tmp,
124
+ cv2.VideoWriter_fourcc(
125
+ *'mp4v'),
126
+ used_fps,
127
+ size)
128
+ # out = cv2.VideoWriter(path_video_tmp, cv2.VideoWriter_fourcc(*'DIVX'), used_fps, size)
129
+
130
+ for frame in tqdm(frames, total=nframes):
131
+ # get colorized frame
132
+ color_frame = colorize_img(model, Image.fromarray(frame))
133
+
134
+ if color_frame.max() <= 1:
135
+ color_frame = (color_frame * 255).astype(np.uint8)
136
+
137
+ color_frame = cv2.cvtColor(color_frame, cv2.COLOR_BGR2RGB)
138
+ out.write(color_frame)
139
+ out.release()
140
+
141
+ # create output path that is same as input path but with '_out.[suffix]'
142
+ path_output = base_path + "_out" + suffix
143
+
144
+ # for some reason, subclip doesn't save audio. so make tmp audio file
145
+ path_audio_tmp = base_path + "audio_tmp.mp3"
146
+ input_video.audio.write_audiofile(path_audio_tmp, logger=None)
147
+ input_audio = AudioFileClip(path_audio_tmp)
148
+
149
+ output_video = VideoFileClip(path_video_tmp)
150
+ output_video = output_video.set_audio(input_audio)
151
+ output_video.write_videofile(path_output, logger=None)
152
+
153
+ os.remove(path_video_tmp)
154
+ os.remove(path_audio_tmp)
155
+
156
+ print("Done.")
157
+ return path_output
dcgan.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn, optim
3
+
4
+ # this architecture is taken from https://github.com/moein-shariatnia/Deep-Learning/tree/main/Image%20Colorization%20Tutorial
5
+
6
+ #this is actually the DCGans. in training, we had kept the class name the same as the original to avoid changing code^
7
+ class Unet(nn.Module):
8
+ def __init__(self, input_c=1, output_c=2, num_filters=128):
9
+ super().__init__()
10
+ self.model = nn.Sequential(
11
+ nn.Conv2d(input_c,64,kernel_size=4,stride = 1,padding="same"),
12
+ nn.BatchNorm2d(64),
13
+ nn.LeakyReLU(0.2, True),
14
+ nn.Conv2d(64,128,kernel_size=4,stride=2,padding=1),
15
+ nn.BatchNorm2d(128),
16
+ nn.LeakyReLU(0.2, True),
17
+ nn.Conv2d(128,256,kernel_size=4,stride=2,padding=1),
18
+ nn.BatchNorm2d(256),
19
+ nn.LeakyReLU(0.2, True),
20
+ nn.Conv2d(256,256,kernel_size=4,stride=2,padding=1),
21
+ nn.BatchNorm2d(256),
22
+ nn.LeakyReLU(0.2, True),
23
+ nn.Conv2d(256,512,kernel_size=4,stride=2,padding=1),
24
+ nn.BatchNorm2d(512),
25
+ nn.LeakyReLU(0.2, True),
26
+ nn.Conv2d(512,512,kernel_size=4,stride=2,padding=1),
27
+ nn.BatchNorm2d(512),
28
+ nn.LeakyReLU(0.2, True),
29
+
30
+ nn.ConvTranspose2d(512,512,kernel_size=4,stride=2,padding=1),
31
+ nn.BatchNorm2d(512),
32
+ nn.ReLU(True),
33
+ nn.ConvTranspose2d(512,256,kernel_size=4,stride=2,padding=1),
34
+ nn.BatchNorm2d(256),
35
+ nn.ReLU(True),
36
+ nn.ConvTranspose2d(256,256,kernel_size=4,stride=2,padding=1),
37
+ nn.BatchNorm2d(256),
38
+ nn.ReLU(True),
39
+ nn.ConvTranspose2d(256,128,kernel_size=4,stride=2,padding=1),
40
+ nn.BatchNorm2d(128),
41
+ nn.ReLU(True),
42
+ nn.ConvTranspose2d(128,64,kernel_size=4,stride=2,padding=1),
43
+ nn.BatchNorm2d(64),
44
+ nn.ReLU(True),
45
+ nn.Conv2d(64,output_c, kernel_size=1,stride=1),
46
+ nn.Tanh()
47
+ )
48
+
49
+ def forward(self, x):
50
+ return self.model(x)
51
+ class PatchDiscriminator(nn.Module):
52
+ def __init__(self, input_c, num_filters=64, n_down=3): # num_filters=64
53
+ super().__init__()
54
+ model = [self.get_layers(input_c, num_filters, norm=False)]
55
+ model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2)
56
+ for i in range(n_down)] # the 'if' statement is taking care of not using
57
+ # stride of 2 for the last block in this loop
58
+ model += [self.get_layers(num_filters * 2 ** n_down, 1, s=1, norm=False, act=False)] # Make sure to not use normalization or
59
+ # activation for the last layer of the model
60
+ self.model = nn.Sequential(*model)
61
+
62
+ def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True): # when needing to make some repeatitive blocks of layers,
63
+ layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)] # it's always helpful to make a separate method for that purpose
64
+ if norm: layers += [nn.BatchNorm2d(nf)]
65
+ if act: layers += [nn.LeakyReLU(0.2, True)] #nn.LeakyReLU(0.2, True)
66
+ return nn.Sequential(*layers)
67
+
68
+ def forward(self, x):
69
+ return self.model(x)
70
+
71
+ class GANLoss(nn.Module):
72
+ def __init__(self, gan_mode='vanilla', real_label=1.0, fake_label=0.0):
73
+ super().__init__()
74
+ self.register_buffer('real_label', torch.tensor(real_label))
75
+ self.register_buffer('fake_label', torch.tensor(fake_label))
76
+ if gan_mode == 'vanilla':
77
+ self.loss = nn.BCEWithLogitsLoss()
78
+ elif gan_mode == 'lsgan':
79
+ self.loss = nn.MSELoss()
80
+
81
+ def get_labels(self, preds, target_is_real):
82
+ if target_is_real:
83
+ labels = self.real_label
84
+ else:
85
+ labels = self.fake_label
86
+ return labels.expand_as(preds)
87
+
88
+ def __call__(self, preds, target_is_real):
89
+ labels = self.get_labels(preds, target_is_real)
90
+ loss = self.loss(preds, labels)
91
+ return loss
92
+
93
+ def init_weights(net, init='norm', gain=0.02):
94
+
95
+ def init_func(m):
96
+ classname = m.__class__.__name__
97
+ if hasattr(m, 'weight') and 'Conv' in classname:
98
+ if init == 'norm':
99
+ nn.init.normal_(m.weight.data, mean=0.0, std=gain)
100
+ elif init == 'xavier':
101
+ nn.init.xavier_normal_(m.weight.data, gain=gain)
102
+ elif init == 'kaiming':
103
+ nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
104
+
105
+ if hasattr(m, 'bias') and m.bias is not None:
106
+ nn.init.constant_(m.bias.data, 0.0)
107
+ elif 'BatchNorm2d' in classname:
108
+ nn.init.normal_(m.weight.data, 1., gain)
109
+ nn.init.constant_(m.bias.data, 0.)
110
+
111
+ net.apply(init_func)
112
+ print(f"model initialized with {init} initialization")
113
+ return net
114
+
115
+ def init_model(model, device):
116
+ model = model.to(device)
117
+ model = init_weights(model)
118
+ return model
119
+
120
+ class MainModel(nn.Module):
121
+ def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4,
122
+ beta1=0.5, beta2=0.999, lambda_L1=100.):
123
+ super().__init__()
124
+
125
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
126
+ self.lambda_L1 = lambda_L1
127
+
128
+ if net_G is None:
129
+ self.net_G = init_model(Unet(input_c=1, output_c=2, num_filters=64), self.device)
130
+ else:
131
+ self.net_G = net_G.to(self.device)
132
+ self.net_D = init_model(PatchDiscriminator(input_c=3, n_down=3, num_filters=64), self.device)
133
+ self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device)
134
+ self.L1criterion = nn.L1Loss()
135
+ self.opt_G = optim.Adam(self.net_G.parameters(), lr=lr_G, betas=(beta1, beta2))
136
+ self.opt_D = optim.Adam(self.net_D.parameters(), lr=lr_D, betas=(beta1, beta2))
137
+
138
+ def set_requires_grad(self, model, requires_grad=True):
139
+ for p in model.parameters():
140
+ p.requires_grad = requires_grad
141
+
142
+ def setup_input(self, data):
143
+ self.L = data['L'].to(self.device)
144
+ self.ab = data['ab'].to(self.device)
145
+
146
+ def forward(self):
147
+ self.fake_color = self.net_G(self.L)
148
+
149
+ def backward_D(self,epoch):
150
+ fake_image = torch.cat([self.L, self.fake_color], dim=1)
151
+ fake_preds = self.net_D(fake_image.detach())
152
+ self.loss_D_fake = self.GANcriterion(fake_preds, False)
153
+ real_image = torch.cat([self.L, self.ab], dim=1)
154
+ real_preds = self.net_D(real_image)
155
+ self.loss_D_real = self.GANcriterion(real_preds, True)
156
+ self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
157
+ # offset discriminator training
158
+ if epoch % 2 ==0:
159
+ self.loss_D.backward()
160
+
161
+ def backward_G(self):
162
+ fake_image = torch.cat([self.L, self.fake_color], dim=1)
163
+ fake_preds = self.net_D(fake_image)
164
+ self.loss_G_GAN = self.GANcriterion(fake_preds, True)
165
+ self.loss_G_L1 = self.L1criterion(self.fake_color, self.ab) * self.lambda_L1
166
+ self.loss_G = self.loss_G_GAN + self.loss_G_L1
167
+ self.loss_G.backward()
168
+
169
+ def optimize(self, epoch):
170
+ self.forward()
171
+ self.net_D.train()
172
+ self.set_requires_grad(self.net_D, True)
173
+ self.opt_D.zero_grad()
174
+ self.backward_D(epoch)
175
+ if epoch % 2 ==0:
176
+ self.opt_D.step()
177
+
178
+ self.net_G.train()
179
+ self.set_requires_grad(self.net_D, False)
180
+ self.opt_G.zero_grad()
181
+ self.backward_G()
182
+ self.opt_G.step()
183
+
184
+ # with torch.no_grad():
185
+ # model = MainModel()
186
+ # set_trace()
187
+ # # model = torch.load("modelbatchv2.pth", map_location=device)
188
+ # model.load_state_dict(torch.load("modelbatchv2.pth", map_location=torch.device('cpu')).state_dict())
189
+ # assert model.device.type == "cpu"
190
+ # model.eval()
examples/1_falcon.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:376f3ae4689b715739276f491f089445cd552031aacbf274d32665e64a4fb188
3
+ size 970446
examples/2_mughal.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70ef48d7bfd3a9c0754e320d16845520c5da89a84a3feaa7dde375cea6d2af37
3
+ size 55261144
examples/3_wizard.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a76046df396bb5ced86ac16de3ed56fc227ba08b3ec7e2552ee56c2336021f84
3
+ size 6026610
examples/4_elgar.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de8fb047d3d251e5af3f5e003601b7f8e23f6ebf327812370656ae304d0b645b
3
+ size 19892928
modelv1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f52e81eafae487dd13bc0b51193c871e55f7fa7d045baf1b3aeede6ce5e1dbee
3
+ size 221098733
modelv2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8a4aa8fbb7e85d01e433bd7633eedb669c9ac51f434df07957b9157d366e3cf
3
+ size 246295842
requirements.txt ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiohttp==3.8.3
2
+ aiosignal==1.3.1
3
+ altair==4.2.0
4
+ anyio==3.6.2
5
+ async-timeout==4.0.2
6
+ attrs==22.2.0
7
+ charset-normalizer==2.1.1
8
+ click==8.1.3
9
+ contourpy==1.0.6
10
+ cycler==0.11.0
11
+ decorator==4.4.2
12
+ entrypoints==0.4
13
+ fastapi==0.88.0
14
+ ffmpy==0.3.0
15
+ fonttools==4.38.0
16
+ frozenlist==1.3.3
17
+ fsspec==2022.11.0
18
+ gradio==3.15.0
19
+ h11==0.14.0
20
+ httpcore==0.16.3
21
+ httpx==0.23.1
22
+ idna==3.4
23
+ imageio==2.23.0
24
+ imageio-ffmpeg==0.4.7
25
+ Jinja2==3.1.2
26
+ jsonschema==4.17.3
27
+ kiwisolver==1.4.4
28
+ linkify-it-py==1.0.3
29
+ markdown-it-py==2.1.0
30
+ MarkupSafe==2.1.1
31
+ matplotlib==3.6.2
32
+ mdit-py-plugins==0.3.3
33
+ mdurl==0.1.2
34
+ moviepy==1.0.3
35
+ multidict==6.0.4
36
+ networkx==2.8.8
37
+ numpy==1.24.1
38
+ opencv-python==4.7.0.68
39
+ orjson==3.8.3
40
+ packaging==22.0
41
+ pandas==1.5.2
42
+ Pillow==9.3.0
43
+ proglog==0.1.10
44
+ pycryptodome==3.16.0
45
+ pydantic==1.10.4
46
+ pydub==0.25.1
47
+ pyparsing==3.0.9
48
+ pyrsistent==0.19.3
49
+ python-dateutil==2.8.2
50
+ python-multipart==0.0.5
51
+ pytube==12.1.2
52
+ pytz==2022.7
53
+ PyWavelets==1.4.1
54
+ PyYAML==6.0
55
+ requests==2.28.1
56
+ rfc3986==1.5.0
57
+ scikit-image==0.19.3
58
+ scipy==1.9.3
59
+ six==1.16.0
60
+ sniffio==1.3.0
61
+ starlette==0.22.0
62
+ tifffile==2022.10.10
63
+ toolz==0.12.0
64
+ torch==1.13.1
65
+ torchvision==0.14.1
66
+ tqdm==4.64.1
67
+ typing_extensions==4.4.0
68
+ uc-micro-py==1.0.1
69
+ urllib3==1.26.13
70
+ uvicorn==0.20.0
71
+ websockets==10.4
72
+ yarl==1.8.2