Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,499 Bytes
117183e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import argparse
from models.model import NamedCurves
import torch
import os
from omegaconf import OmegaConf
from glob import glob
from PIL import Image
from torchvision.transforms import functional as TF
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--input_path', type=str, default='assets/a4957-input.png')
parser.add_argument('--output_path', type=str, default='output/')
parser.add_argument('--model_path', type=str, default='/home/dserrano/Workspace/Color-Naming-Image-Enhancement/pretrained/mit5k_uegan_psnr_25.59.pth')
parser.add_argument('--config_path', type=str, default='configs/mit5k_dpe_config.yaml')
return parser.parse_args()
def main():
args = parse_args()
config = OmegaConf.load(args.config_path)
model = NamedCurves(config.model).cuda()
model.load_state_dict(torch.load(args.model_path)["model_state_dict"])
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
#check if input_path is a folder
if os.path.isdir(args.input_path):
input_paths = glob(sorted(args.input_path + '/*'))
else:
input_paths = [args.input_path]
for input_path in input_paths:
input_tensor = TF.to_tensor(Image.open(input_path)).unsqueeze(0)
output = model(input_tensor.cuda())
output = TF.to_pil_image(output[0].cpu())
output.save(os.path.join(args.output_path, os.path.basename(input_path)))
if __name__ == '__main__':
main() |