Spaces:
Runtime error
Runtime error
import torch.nn.functional as nnf | |
import torch | |
import abc | |
import numpy as np | |
import seq_aligner | |
from typing import Optional, Union, Tuple, List, Callable, Dict | |
MAX_NUM_WORDS = 77 | |
LOW_RESOURCE = False | |
NUM_DDIM_STEPS = 50 | |
device = 'cuda' | |
tokenizer = None | |
# Different attention controllers | |
# ---------------------------------------------------------------------- | |
class LocalBlend: | |
def get_mask(self, maps, alpha, use_pool, x_t): | |
k = 1 | |
maps = (maps * alpha).sum(-1).mean(1) | |
if use_pool: | |
maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k)) | |
mask = nnf.interpolate(maps, size=(x_t.shape[2:])) | |
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] | |
mask = mask.gt(self.th[1 - int(use_pool)]) | |
mask = mask[:1] + mask | |
return mask | |
def __call__(self, x_t, attention_store): | |
self.counter += 1 | |
if self.counter > self.start_blend: | |
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] | |
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps] | |
maps = torch.cat(maps, dim=1) | |
mask = self.get_mask(maps, self.alpha_layers, True, x_t) | |
if self.substruct_layers is not None: | |
maps_sub = ~self.get_mask(maps, self.substruct_layers, False, x_t) | |
mask = mask * maps_sub | |
mask = mask.float() | |
x_t = x_t[:1] + mask * (x_t - x_t[:1]) | |
return x_t | |
def __init__(self, prompts: List[str], words: [List[List[str]]], substruct_words=None, start_blend=0.2, | |
th=(.3, .3)): | |
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) | |
for i, (prompt, words_) in enumerate(zip(prompts, words)): | |
if type(words_) is str: | |
words_ = [words_] | |
for word in words_: | |
ind = get_word_inds(prompt, word, tokenizer) | |
alpha_layers[i, :, :, :, :, ind] = 1 | |
if substruct_words is not None: | |
substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) | |
for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)): | |
if type(words_) is str: | |
words_ = [words_] | |
for word in words_: | |
ind = get_word_inds(prompt, word, tokenizer) | |
substruct_layers[i, :, :, :, :, ind] = 1 | |
self.substruct_layers = substruct_layers.to(device) | |
else: | |
self.substruct_layers = None | |
self.alpha_layers = alpha_layers.to(device) | |
self.start_blend = int(start_blend * NUM_DDIM_STEPS) | |
self.counter = 0 | |
self.th = th | |
class EmptyControl: | |
def step_callback(self, x_t): | |
return x_t | |
def between_steps(self): | |
return | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
return attn | |
class AttentionControl(abc.ABC): | |
def step_callback(self, x_t): | |
return x_t | |
def between_steps(self): | |
return | |
def num_uncond_att_layers(self): | |
return self.num_att_layers if LOW_RESOURCE else 0 | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
raise NotImplementedError | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
if self.cur_att_layer >= self.num_uncond_att_layers: | |
if LOW_RESOURCE: | |
attn = self.forward(attn, is_cross, place_in_unet) | |
else: | |
h = attn.shape[0] | |
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) | |
self.cur_att_layer += 1 | |
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: | |
self.cur_att_layer = 0 | |
self.cur_step += 1 | |
self.between_steps() | |
return attn | |
def reset(self): | |
self.cur_step = 0 | |
self.cur_att_layer = 0 | |
def __init__(self): | |
self.cur_step = 0 | |
self.num_att_layers = -1 | |
self.cur_att_layer = 0 | |
class SpatialReplace(EmptyControl): | |
def step_callback(self, x_t): | |
if self.cur_step < self.stop_inject: | |
b = x_t.shape[0] | |
x_t = x_t[:1].expand(b, *x_t.shape[1:]) | |
return x_t | |
def __init__(self, stop_inject: float): | |
super(SpatialReplace, self).__init__() | |
self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS) | |
class AttentionStore(AttentionControl): | |
def get_empty_store(): | |
return {"down_cross": [], "mid_cross": [], "up_cross": [], | |
"down_self": [], "mid_self": [], "up_self": []} | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | |
if attn.shape[1] <= 32 ** 2: # avoid memory overhead | |
self.step_store[key].append(attn) | |
return attn | |
def between_steps(self): | |
if len(self.attention_store) == 0: | |
self.attention_store = self.step_store | |
else: | |
for key in self.attention_store: | |
for i in range(len(self.attention_store[key])): | |
self.attention_store[key][i] += self.step_store[key][i] | |
self.step_store = self.get_empty_store() | |
def get_average_attention(self): | |
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in | |
self.attention_store} | |
return average_attention | |
def reset(self): | |
super(AttentionStore, self).reset() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
def __init__(self): | |
super(AttentionStore, self).__init__() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
class AttentionControlEdit(AttentionStore, abc.ABC): | |
def step_callback(self, x_t): | |
if self.local_blend is not None: | |
x_t = self.local_blend(x_t, self.attention_store) | |
return x_t | |
def replace_self_attention(self, attn_base, att_replace, place_in_unet): | |
if att_replace.shape[2] <= 32 ** 2: | |
attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) | |
return attn_base | |
else: | |
return att_replace | |
def replace_cross_attention(self, attn_base, att_replace): | |
raise NotImplementedError | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) | |
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): | |
h = attn.shape[0] // (self.batch_size) | |
attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) | |
attn_base, attn_repalce = attn[0], attn[1:] | |
if is_cross: | |
alpha_words = self.cross_replace_alpha[self.cur_step] | |
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + ( | |
1 - alpha_words) * attn_repalce | |
attn[1:] = attn_repalce_new | |
else: | |
attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet) | |
attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) | |
return attn | |
def __init__(self, prompts, num_steps: int, | |
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
self_replace_steps: Union[float, Tuple[float, float]], | |
local_blend: Optional[LocalBlend]): | |
super(AttentionControlEdit, self).__init__() | |
self.batch_size = len(prompts) | |
self.cross_replace_alpha = get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, | |
tokenizer).to(device) | |
if type(self_replace_steps) is float: | |
self_replace_steps = 0, self_replace_steps | |
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) | |
self.local_blend = local_blend | |
class AttentionReplace(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, | |
local_blend: Optional[LocalBlend] = None): | |
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device) | |
class AttentionRefine(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) | |
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) | |
# attn_replace = attn_replace / attn_replace.sum(-1, keepdims=True) | |
return attn_replace | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, | |
local_blend: Optional[LocalBlend] = None): | |
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer) | |
self.mapper, alphas = self.mapper.to(device), alphas.to(device) | |
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) | |
class AttentionReweight(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
if self.prev_controller is not None: | |
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) | |
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] | |
# attn_replace = attn_replace / attn_replace.sum(-1, keepdims=True) | |
return attn_replace | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer, | |
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None): | |
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, | |
local_blend) | |
self.equalizer = equalizer.to(device) | |
self.prev_controller = controller | |
self.attn = [] | |
# ---------------------------------------------------------------------- | |
# Attention controller during sampling | |
# ---------------------------------------------------------------------- | |
def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], | |
self_replace_steps: float, blend_words=None, equilizer_params=None) -> AttentionControlEdit: | |
if blend_words is None: | |
lb = None | |
else: | |
lb = LocalBlend(prompts, blend_words, start_blend=0.0, th=(0.3, 0.3)) | |
if is_replace_controller: | |
controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, | |
self_replace_steps=self_replace_steps, local_blend=lb) | |
else: | |
controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, | |
self_replace_steps=self_replace_steps, local_blend=lb) | |
if equilizer_params is not None: | |
eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"]) | |
controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, | |
self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, | |
controller=controller) | |
return controller | |
def register_attention_control(model, controller): | |
def ca_forward(self, place_in_unet): | |
to_out = self.to_out | |
if type(to_out) is torch.nn.modules.container.ModuleList: | |
to_out = self.to_out[0] | |
else: | |
to_out = self.to_out | |
def forward(hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): | |
is_cross = encoder_hidden_states is not None | |
residual = hidden_states | |
if self.spatial_norm is not None: | |
hidden_states = self.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif self.norm_cross: | |
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states) | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
query = self.head_to_batch_dim(query) | |
key = self.head_to_batch_dim(key) | |
value = self.head_to_batch_dim(value) | |
attention_probs = self.get_attention_scores(query, key, attention_mask) | |
attention_probs = controller(attention_probs, is_cross, place_in_unet) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = self.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = to_out(hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if self.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / self.rescale_output_factor | |
return hidden_states | |
return forward | |
class DummyController: | |
def __call__(self, *args): | |
return args[0] | |
def __init__(self): | |
self.num_att_layers = 0 | |
if controller is None: | |
controller = DummyController() | |
def register_recr(net_, count, place_in_unet): | |
if net_.__class__.__name__ == 'Attention': | |
net_.forward = ca_forward(net_, place_in_unet) | |
return count + 1 | |
elif hasattr(net_, 'children'): | |
for net__ in net_.children(): | |
count = register_recr(net__, count, place_in_unet) | |
return count | |
cross_att_count = 0 | |
sub_nets = model.unet.named_children() | |
for net in sub_nets: | |
if "down" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "down") | |
elif "up" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "up") | |
elif "mid" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "mid") | |
controller.num_att_layers = cross_att_count | |
# ---------------------------------------------------------------------- | |
# Other | |
# ---------------------------------------------------------------------- | |
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], | |
Tuple[float, ...]]): | |
if type(word_select) is int or type(word_select) is str: | |
word_select = (word_select,) | |
equalizer = torch.ones(1, 77) | |
for word, val in zip(word_select, values): | |
inds = get_word_inds(text, word, tokenizer) | |
equalizer[:, inds] = val | |
return equalizer | |
def get_time_words_attention_alpha(prompts, num_steps, | |
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], | |
tokenizer, max_num_words=77): | |
if type(cross_replace_steps) is not dict: | |
cross_replace_steps = {"default_": cross_replace_steps} | |
if "default_" not in cross_replace_steps: | |
cross_replace_steps["default_"] = (0., 1.) | |
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words) | |
for i in range(len(prompts) - 1): | |
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], | |
i) | |
for key, item in cross_replace_steps.items(): | |
if key != "default_": | |
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))] | |
for i, ind in enumerate(inds): | |
if len(ind) > 0: | |
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind) | |
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) | |
return alpha_time_words | |
def get_word_inds(text: str, word_place: int, tokenizer): | |
split_text = text.split(" ") | |
if type(word_place) is str: | |
word_place = [i for i, word in enumerate(split_text) if word_place == word] | |
elif type(word_place) is int: | |
word_place = [word_place] | |
out = [] | |
if len(word_place) > 0: | |
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] | |
cur_len, ptr = 0, 0 | |
for i in range(len(words_encode)): | |
cur_len += len(words_encode[i]) | |
if ptr in word_place: | |
out.append(i + 1) | |
if cur_len >= len(split_text[ptr]): | |
ptr += 1 | |
cur_len = 0 | |
return np.array(out) | |
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, | |
word_inds: Optional[torch.Tensor] = None): | |
if type(bounds) is float: | |
bounds = 0, bounds | |
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) | |
if word_inds is None: | |
word_inds = torch.arange(alpha.shape[2]) | |
alpha[: start, prompt_ind, word_inds] = 0 | |
alpha[start: end, prompt_ind, word_inds] = 1 | |
alpha[end:, prompt_ind, word_inds] = 0 | |
return alpha | |
# ---------------------------------------------------------------------- | |