Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import numpy as np | |
import torch | |
from PIL import Image | |
from diffusers import DDPMScheduler, StableDiffusionPipeline, DDIMScheduler, UNet2DConditionModel | |
from diffusers import StableDiffusionInstructPix2PixPipeline, LCMScheduler | |
# InstructPix2Pix with LCM specified scheduler | |
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( | |
"timbrooks/instruct-pix2pix", torch_dtype=torch.float16 | |
) | |
pipe = pipe.to("cuda") | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
# Adapt the InstructPix2Pix model using the LoRA parameters | |
adapter_id = "latent-consistency/lcm-lora-sdv1-5" | |
pipe.load_lora_weights(adapter_id) | |
pipe.to('cuda') | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(image, edit_instruction, guidance_scale, n_steps): | |
image = Image.fromarray(image).resize((512, 512)) | |
image = pipe(prompt=edit_instruction, | |
image=image, | |
num_inference_steps=n_steps, | |
guidance_scale=guidance_scale, | |
image_guidance_scale=1.0 | |
).images[0] | |
return image | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 1024px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
f""" | |
# ⚡ Instruct-pix2pix with Consistency Distillation⚡ | |
Currently running on {power_device} | |
""" | |
) | |
gr.Markdown( | |
"If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/invertible-cd' target='_blank'>Github Repo</a>. [![GitHub Stars](https://img.shields.io/github/stars/quickjkee/instruct-pix2pix-distill?style=social)](https://github.com/quickjkee/instruct-pix2pix-distill)" | |
) | |
with gr.Row(): | |
edit_instruction = gr.Text( | |
label="Edit instruction", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Input image", height=512, width=512, show_label=False) | |
with gr.Column(): | |
result = gr.Image(label="Result", height=512, width=512, show_label=False) | |
with gr.Accordion("Advanced Settings", open=True): | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="guidance scale", | |
minimum=1.0, | |
maximum=5.0, | |
step=1.0, | |
value=2.0, | |
) | |
n_steps = gr.Slider( | |
label="inference steps", | |
minimum=1.0, | |
maximum=10.0, | |
step=1.0, | |
value=4.0, | |
) | |
with gr.Row(): | |
run_button = gr.Button("Edit", scale=0) | |
with gr.Row(): | |
examples = [ | |
[ | |
"examples/orig_3.jpg", #input_image | |
"turn apples into oranges", #tgt_prompt | |
2, #guidance_scale | |
4 | |
], | |
[ | |
"examples/orig_1.jpg", #input_image | |
"Make it a Modigliani painting", #tgt_prompt | |
2, #guidance_scale | |
4 | |
], | |
[ | |
"examples/orig_2.jpg", #input_image | |
"Turn a teddy bear into panda", #tgt_prompt | |
2, #guidance_scale | |
4 | |
], | |
] | |
gr.Examples( | |
examples = examples, | |
inputs =[image, edit_instruction, guidance_scale, n_steps], | |
outputs=[ | |
result | |
], | |
fn=infer, cache_examples=True | |
) | |
run_button.click( | |
fn = infer, | |
inputs=[image, edit_instruction, guidance_scale, n_steps], | |
outputs = [result] | |
) | |
demo.queue().launch() | |