import spaces import gradio as gr import numpy as np import torch from PIL import Image from diffusers import DDPMScheduler, StableDiffusionPipeline, DDIMScheduler, UNet2DConditionModel from diffusers import StableDiffusionInstructPix2PixPipeline, LCMScheduler # InstructPix2Pix with LCM specified scheduler pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( "timbrooks/instruct-pix2pix", torch_dtype=torch.float16 ) pipe = pipe.to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) # Adapt the InstructPix2Pix model using the LoRA parameters adapter_id = "latent-consistency/lcm-lora-sdv1-5" pipe.load_lora_weights(adapter_id) pipe.to('cuda') MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU(duration=30) def infer(image, edit_instruction, guidance_scale, n_steps): image = Image.fromarray(image).resize((512, 512)) image = pipe(prompt=edit_instruction, image=image, num_inference_steps=n_steps, guidance_scale=guidance_scale, image_guidance_scale=1.0 ).images[0] return image css=""" #col-container { margin: 0 auto; max-width: 1024px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( f""" # ⚡ Instruct-pix2pix with Consistency Distillation⚡ Currently running on {power_device} """ ) gr.Markdown( "If you enjoy the space, feel free to give a ⭐ to the Github Repo. [![GitHub Stars](https://img.shields.io/github/stars/quickjkee/instruct-pix2pix-distill?style=social)](https://github.com/quickjkee/instruct-pix2pix-distill)" ) with gr.Row(): edit_instruction = gr.Text( label="Edit instruction", max_lines=1, placeholder="Enter your prompt", ) with gr.Row(): with gr.Column(): image = gr.Image(label="Input image", height=512, width=512, show_label=False) with gr.Column(): result = gr.Image(label="Result", height=512, width=512, show_label=False) with gr.Accordion("Advanced Settings", open=True): with gr.Row(): guidance_scale = gr.Slider( label="guidance scale", minimum=1.0, maximum=5.0, step=1.0, value=2.0, ) n_steps = gr.Slider( label="inference steps", minimum=1.0, maximum=10.0, step=1.0, value=4.0, ) with gr.Row(): run_button = gr.Button("Edit", scale=0) with gr.Row(): examples = [ [ "examples/orig_3.jpg", #input_image "turn apples into oranges", #tgt_prompt 2, #guidance_scale 4 ], [ "examples/orig_1.jpg", #input_image "Make it a Modigliani painting", #tgt_prompt 2, #guidance_scale 4 ], [ "examples/orig_2.jpg", #input_image "Turn a teddy bear into panda", #tgt_prompt 2, #guidance_scale 4 ], ] gr.Examples( examples = examples, inputs =[image, edit_instruction, guidance_scale, n_steps], outputs=[ result ], fn=infer, cache_examples=True ) run_button.click( fn = infer, inputs=[image, edit_instruction, guidance_scale, n_steps], outputs = [result] ) demo.queue().launch()