Spaces:
Configuration error
Configuration error
File size: 4,045 Bytes
6c4dee3 412b3d8 6c4dee3 412b3d8 6c4dee3 412b3d8 6c4dee3 412b3d8 6c4dee3 412b3d8 6c4dee3 412b3d8 6c4dee3 412b3d8 6c4dee3 412b3d8 6c4dee3 412b3d8 6c4dee3 412b3d8 6c4dee3 412b3d8 6c4dee3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import gradio as gr
import numpy as np
import random
import spaces
from models import TVARPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "michellemoorre/var-test"
pipe = TVARPipeline.from_pretrained(model_repo_id, device=device)
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
guidance_scale=4.0,
top_k=450,
top_p=0.95,
re=True,
re_max_depth=10,
re_start_iter=2,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = pipe(
prompt=prompt,
null_prompt=negative_prompt,
cfg=guidance_scale,
top_p=top_p,
top_k=top_k,
re=re,
re_max_depth=re_max_depth,
re_start_iter=re_start_iter,
g_seed=seed,
)[0]
return image, seed
# TODO: add examples from preview
examples = [
"A capybara wearing a suit holding a sign that reads Hello World",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [OpenTVAR](https://huggingface.co/stabilityai/stable-diffusion-3.5-large)")
gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3-5) about the OpenTVAR.")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.5,
value=4.,
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
with gr.Row():
top_k = gr.Slider(
label="Sampling top k",
minimum=10,
maximum=1000,
step=20,
value=450,
)
top_p = gr.Slider(
label="Sampling top p",
minimum=0.0,
maximum=1.,
step=0.05,
value=0.95,
)
re = gr.Checkbox(label="Rejection Sampling (RE)", value=True)
with gr.Row():
re_max_depth = gr.Slider(
label="RE Depth",
minimum=0,
maximum=20,
step=4,
value=10,
)
re_start_iter = gr.Slider(
label="RE Start Scale",
minimum=0,
maximum=9,
step=1,
value=2,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True)# cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
top_k,
top_p,
re,
re_max_depth,
re_start_iter,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|