tvar-demo-test / models /basic_var.py
michellemoorre's picture
Initial commit
6c4dee3
import math
import warnings
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn
from torch.nn.functional import scaled_dot_product_attention # q, k, v: BHLc
from models.helpers import DropPath
from models.rope import apply_rotary_emb
try:
from flash_attn.ops.fused_dense import fused_mlp_func
except ImportError:
fused_mlp_func = None
# this file only provides the 4 blocks used in VAR transformer
__all__ = ["FFN", "AdaLNSelfCrossAttn", "AdaLNBeforeHead"]
try:
from apex.normalization import FusedRMSNorm as RMSNorm
except ImportError:
warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
output = self._norm(x.float()).type_as(x)
return output * self.weight
class FFN(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
drop=0.0,
fused_if_available=True,
):
super().__init__()
self.fused_mlp_func = fused_mlp_func if fused_if_available else None
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = nn.GELU(approximate="tanh")
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop, inplace=True) if drop > 0 else nn.Identity()
def forward(self, x):
if self.fused_mlp_func is not None:
return self.drop(
self.fused_mlp_func(
x=x,
weight1=self.fc1.weight,
weight2=self.fc2.weight,
bias1=self.fc1.bias,
bias2=self.fc2.bias,
activation="gelu_approx",
save_pre_act=self.training,
return_residual=False,
checkpoint_lvl=0,
heuristic=0,
process_group=None,
)
)
else:
return self.drop(self.fc2(self.act(self.fc1(x))))
def extra_repr(self) -> str:
return f"fused_mlp_func={self.fused_mlp_func is not None}"
class SwiGLUFFN(nn.Module):
def __init__(
self,
dim: int,
ff_mult: float = 8 / 3,
):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
ff_mult (float, optional): Custom multiplier for hidden dimension. Defaults to 4.
"""
super().__init__()
hidden_dim = int(dim * ff_mult)
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
self.fused_mlp_func = None
self._init()
def _init(self):
for module in self.modules():
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
# @torch.compile
def _forward_silu_gating(self, x_gate: torch.Tensor, x_up: torch.Tensor):
return F.silu(x_gate) * x_up
def forward(self, x: torch.Tensor):
return self.down_proj(
self._forward_silu_gating(self.gate_proj(x), self.up_proj(x))
)
def extra_repr(self) -> str:
return f"fused_mlp_func={self.fused_mlp_func is not None}"
class CrossAttention(nn.Module):
def __init__(
self,
embed_dim: int = 768,
context_dim: int = 2048,
num_heads: int = 12,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
qk_norm: bool = False,
):
super().__init__()
assert embed_dim % num_heads == 0
assert attn_drop == 0.0
self.num_heads, self.head_dim = (
num_heads,
embed_dim // num_heads,
)
self.qk_norm = qk_norm
self.scale = 1 / math.sqrt(self.head_dim)
self.q_norm = nn.LayerNorm(embed_dim, eps=1e-6)
self.k_norm = nn.LayerNorm(embed_dim, eps=1e-6)
self.to_q = nn.Linear(embed_dim, embed_dim, bias=True)
self.to_kv = nn.Linear(context_dim, embed_dim * 2, bias=True)
self.proj = nn.Linear(embed_dim, embed_dim)
self.proj_drop = (
nn.Dropout(proj_drop, inplace=True) if proj_drop > 0 else nn.Identity()
)
self.attn_drop = attn_drop
# only used during inference
self.caching, self.cached_k, self.cached_v = False, None, None
def kv_caching(self, enable: bool):
self.caching, self.cached_k, self.cached_v = enable, None, None
def forward(self, x, context, context_attn_bias=None, freqs_cis=None):
B, L, C = x.shape
context_B, context_L, context_C = context.shape
assert B == context_B
q = self.to_q(x).view(B, L, -1) # BLD , self.num_heads, self.head_dim)
if self.qk_norm:
q = self.q_norm(q)
q = q.view(B, L, self.num_heads, self.head_dim)
q = q.permute(0, 2, 1, 3) # BHLc
if self.cached_k is None:
# not using caches or first scale inference
kv = self.to_kv(context).view(B, context_L, 2, -1) # qkv: BL3D
k, v = kv.permute(2, 0, 1, 3).unbind(dim=0) # q or k or v: BLHD
if self.qk_norm:
k = self.k_norm(k)
k = k.view(B, context_L, self.num_heads, self.head_dim)
k = k.permute(0, 2, 1, 3) # BHLc
v = v.view(B, context_L, self.num_heads, self.head_dim)
v = v.permute(0, 2, 1, 3) # BHLc
if self.caching:
self.cached_k = k
self.cached_v = v
else:
k = self.cached_k
v = self.cached_v
if context_attn_bias is not None:
context_attn_bias = rearrange(context_attn_bias, "b j -> b 1 1 j")
dropout_p = self.attn_drop if self.training else 0.0
out = (
scaled_dot_product_attention(
query=q,
key=k,
value=v,
scale=self.scale,
attn_mask=context_attn_bias,
dropout_p=dropout_p,
)
.transpose(1, 2)
.reshape(B, L, C)
)
return self.proj_drop(self.proj(out))
class SelfAttention(nn.Module):
def __init__(
self,
block_idx: int,
embed_dim: int = 768,
num_heads: int = 12,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
qk_norm: bool = False,
):
super().__init__()
assert embed_dim % num_heads == 0
self.block_idx, self.num_heads, self.head_dim = (
block_idx,
num_heads,
embed_dim // num_heads,
)
self.qk_norm = qk_norm
self.scale = 1 / math.sqrt(self.head_dim)
self.q_norm = nn.LayerNorm(embed_dim, eps=1e-6)
self.k_norm = nn.LayerNorm(embed_dim, eps=1e-6)
self.to_qkv = nn.Linear(embed_dim, embed_dim * 3, bias=True)
self.proj = nn.Linear(embed_dim, embed_dim)
self.proj_drop = (
nn.Dropout(proj_drop, inplace=True) if proj_drop > 0 else nn.Identity()
)
self.attn_drop = attn_drop
# only used during inference
self.caching, self.cached_k, self.cached_v = False, None, None
def kv_caching(self, enable: bool):
self.caching, self.cached_k, self.cached_v = enable, None, None
# NOTE: attn_bias is None during inference because kv cache is enabled
def forward(self, x, attn_bias, freqs_cis: torch.Tensor = None):
B, L, C = x.shape
qkv = self.to_qkv(x).view(B, L, 3, -1)
q, k, v = qkv.permute(2, 0, 1, 3).unbind(dim=0) # q or k or v: BLD
if self.qk_norm:
q = self.q_norm(q)
k = self.k_norm(k)
q = q.view(B, L, self.num_heads, self.head_dim)
q = q.permute(0, 2, 1, 3) # BHLc
k = k.view(B, L, self.num_heads, self.head_dim)
k = k.permute(0, 2, 1, 3) # BHLc
v = v.view(B, L, self.num_heads, self.head_dim)
v = v.permute(0, 2, 1, 3) # BHLc
dim_cat = 2
if freqs_cis is not None:
q = apply_rotary_emb(q, freqs_cis=freqs_cis)
k = apply_rotary_emb(k, freqs_cis=freqs_cis)
if self.caching:
if self.cached_k is None:
self.cached_k = k
self.cached_v = v
else:
k = self.cached_k = torch.cat((self.cached_k, k), dim=dim_cat)
v = self.cached_v = torch.cat((self.cached_v, v), dim=dim_cat)
dropout_p = self.attn_drop if self.training else 0.0
out = (
scaled_dot_product_attention(
query=q,
key=k,
value=v,
scale=self.scale,
attn_mask=attn_bias,
dropout_p=dropout_p,
)
.transpose(1, 2)
.reshape(B, L, C)
)
return self.proj_drop(self.proj(out))
def extra_repr(self) -> str:
return f"attn_l2_norm={self.qk_norm}"
class AdaLNSelfCrossAttn(nn.Module):
def __init__(
self,
block_idx,
last_drop_p,
embed_dim,
cond_dim,
shared_aln: bool,
num_heads,
mlp_ratio=4.0,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
qk_norm=False,
context_dim=None,
use_swiglu_ffn=False,
norm_eps=1e-6,
):
super().__init__()
assert attn_drop == 0.0
assert qk_norm
self.block_idx, self.last_drop_p, self.C = block_idx, last_drop_p, embed_dim
self.C, self.D = embed_dim, cond_dim
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.attn = SelfAttention(
block_idx=block_idx,
embed_dim=embed_dim,
num_heads=num_heads,
attn_drop=attn_drop,
proj_drop=drop,
qk_norm=qk_norm,
)
if context_dim:
self.cross_attn = CrossAttention(
embed_dim=embed_dim,
context_dim=context_dim,
num_heads=num_heads,
attn_drop=attn_drop,
proj_drop=drop,
qk_norm=qk_norm,
)
else:
self.cross_attn = None
if use_swiglu_ffn:
self.ffn = SwiGLUFFN(dim=embed_dim)
else:
self.ffn = FFN(
in_features=embed_dim,
hidden_features=round(embed_dim * mlp_ratio),
drop=drop,
)
self.self_attention_norm1 = RMSNorm(embed_dim, eps=norm_eps)
self.self_attention_norm2 = RMSNorm(embed_dim, eps=norm_eps)
self.cross_attention_norm1 = RMSNorm(embed_dim, eps=norm_eps)
self.cross_attention_norm2 = RMSNorm(embed_dim, eps=norm_eps)
self.ffn_norm1 = RMSNorm(embed_dim, eps=norm_eps)
self.ffn_norm2 = RMSNorm(embed_dim, eps=norm_eps)
self.attention_y_norm = RMSNorm(context_dim, eps=norm_eps)
self.shared_aln = shared_aln
if self.shared_aln:
self.ada_gss = nn.Parameter(
torch.randn(1, 1, 6, embed_dim) / embed_dim**0.5
)
else:
lin = nn.Linear(cond_dim, 6 * embed_dim)
self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin)
self.fused_add_norm_fn = None
# NOTE: attn_bias is None during inference because kv cache is enabled
def forward(
self,
x,
cond_BD,
attn_bias,
context=None,
context_attn_bias=None,
freqs_cis=None,
): # C: embed_dim, D: cond_dim
if self.shared_aln:
gamma1, gamma2, scale1, scale2, shift1, shift2 = (
self.ada_gss + cond_BD
).unbind(
2
) # 116C + B16C =unbind(2)=> 6 B1C
else:
gamma1, gamma2, scale1, scale2, shift1, shift2 = (
self.ada_lin(cond_BD).view(-1, 1, 6, self.C).unbind(2)
)
x = x + self.self_attention_norm2(
self.attn(
self.self_attention_norm1(x).mul(scale1.add(1)).add(shift1),
attn_bias=attn_bias,
freqs_cis=freqs_cis,
).mul(gamma1)
)
if context is not None:
x = x + self.cross_attention_norm2(
self.cross_attn(
self.cross_attention_norm1(x),
self.attention_y_norm(context),
context_attn_bias=context_attn_bias,
freqs_cis=freqs_cis,
)
)
x = x + self.ffn_norm2(
self.ffn(self.ffn_norm1(x).mul(scale2.add(1)).add(shift2)).mul(gamma2)
)
return x
def extra_repr(self) -> str:
return f"shared_aln={self.shared_aln}"
class AdaLNBeforeHead(nn.Module):
def __init__(self, C, D, norm_layer): # C: embed_dim, D: cond_dim
super().__init__()
self.C, self.D = C, D
self.ln_wo_grad = norm_layer(C, elementwise_affine=False)
self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), nn.Linear(D, 2 * C))
def forward(self, x_BLC: torch.Tensor, cond_BD: torch.Tensor):
scale, shift = self.ada_lin(cond_BD).view(-1, 1, 2, self.C).unbind(2)
return self.ln_wo_grad(x_BLC).mul(scale.add(1)).add_(shift)