import gradio as gr import numpy as np import random import spaces from models import TVARPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "michellemoorre/var-test" pipe = TVARPipeline.from_pretrained(model_repo_id, device=device) MAX_SEED = np.iinfo(np.int32).max @spaces.GPU(duration=65) def infer( prompt, negative_prompt="", seed=42, randomize_seed=False, guidance_scale=4.0, top_k=450, top_p=0.95, re=True, re_max_depth=10, re_start_iter=2, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) image = pipe( prompt=prompt, null_prompt=negative_prompt, cfg=guidance_scale, top_p=top_p, top_k=top_k, re=re, re_max_depth=re_max_depth, re_start_iter=re_start_iter, g_seed=seed, )[0] return image, seed # TODO: add examples from preview examples = [ "A capybara wearing a suit holding a sign that reads Hello World", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # [OpenTVAR](https://huggingface.co/stabilityai/stable-diffusion-3.5-large)") gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3-5) about the OpenTVAR.") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) seed = gr.Number( label="Seed", minimum=0, maximum=MAX_SEED, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=7.5, step=0.5, value=4., ) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) with gr.Row(): top_k = gr.Slider( label="Sampling top k", minimum=10, maximum=1000, step=20, value=450, ) top_p = gr.Slider( label="Sampling top p", minimum=0.0, maximum=1., step=0.05, value=0.95, ) re = gr.Checkbox(label="Rejection Sampling (RE)", value=True) with gr.Row(): re_max_depth = gr.Slider( label="RE Depth", minimum=0, maximum=20, step=4, value=10, ) re_start_iter = gr.Slider( label="RE Start Scale", minimum=0, maximum=9, step=1, value=2, ) gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True)# cache_mode="lazy") gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, guidance_scale, top_k, top_p, re, re_max_depth, re_start_iter, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()