Spaces:
Runtime error
Runtime error
File size: 5,883 Bytes
0516286 814d94e 02dd597 0516286 00038d3 0516286 00038d3 0516286 00038d3 0516286 00038d3 0516286 00038d3 0516286 00038d3 0516286 00038d3 0516286 00038d3 0516286 00038d3 0516286 00038d3 0516286 00038d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import torch
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import gradio as gr
import warnings
import streamlit as st
from PIL import Image
from transformers import AutoTokenizer, AutoModelForSequenceClassification, DistilBertForSequenceClassification, AutoModelForSeq2SeqLM
from tqdm import tqdm
from torchvision import models
from torchvision.transforms import v2
from torch.utils.data import Dataset, DataLoader
from keras.preprocessing import image
from torchmetrics.classification import MultilabelF1Score
from sklearn.metrics import average_precision_score, ndcg_score
# In[2]:
warnings.filterwarnings("ignore")
# In[3]:
genres = ["Crime", "Thriller", "Fantasy", "Horror", "Sci-Fi", "Comedy", "Documentary", "Adventure", "Film-Noir", "Animation", "Romance", "Drama", "Western", "Musical", "Action", "Mystery", "War", "Children\'s"]
mapping = {}
for i in range(len(genres)):
mapping[i] = genres[i]
mapping
# In[4]:
tokenizer_gen = AutoTokenizer.from_pretrained("MBZUAI/LaMini-Flan-T5-248M")
model_gen = AutoModelForSeq2SeqLM.from_pretrained("MBZUAI/LaMini-Flan-T5-248M")
tokenizer1 = AutoTokenizer.from_pretrained("distilbert-base-uncased")
model1 = DistilBertForSequenceClassification .from_pretrained("distilbert-base-uncased", problem_type="multi_label_classification", num_labels=18)
model1.config.id2label = mapping
tokenizer2 = AutoTokenizer.from_pretrained("dduy193/plot-classification")
model2 = AutoModelForSequenceClassification.from_pretrained("dduy193/plot-classification")
model2.config.id2label = mapping
model3 = models.resnet101(pretrained=False)
model3.fc = torch.nn.Linear(2048, len(genres))
# In[5]:
class Multimodal(torch.nn.Module):
def __init__(self, model1, model2, model3):
super().__init__()
self.model1 = model1
self.model2 = model2
self.model3 = model3
self.fc1 = torch.nn.Linear(18, 18)
self.fc2 = torch.nn.Linear(18, 18)
self.fc3 = torch.nn.Linear(18, 18)
def forward(self,
title_input_ids, title_attention_mask,
plot_input_ids, plot_attention_mask,
image_input):
title_output = self.model1(title_input_ids, title_attention_mask)
plot_output = self.model2(plot_input_ids, plot_attention_mask)
image_output = self.model3(image_input)
title_output = self.fc1(title_output.logits)
plot_output = self.fc2(plot_output.logits)
image_output = self.fc3(image_output)
output = torch.add(title_output, plot_output)
output = torch.add(output, image_output)
return output
# **_PLEASE INSTALL THE MODEL CHECKPOINT FROM THE LINK IN README.txt_**
# In[7]:
model = Multimodal(model1, model2, model3)
model.load_state_dict(torch.load('multimodel.pt', map_location=torch.device('cpu')))
model.eval()
device = torch.device('cpu')
# In[8]:
def generate_plot(title: str, model: AutoModelForSeq2SeqLM, tokenizer: AutoTokenizer, device) -> str:
quote = 'What is the story of the movie {}?'
model_gen.to(device)
model_gen.eval()
input_ids = tokenizer(quote.format(title), return_tensors='pt').input_ids.to(device)
output = model.generate(input_ids, max_length=256, do_sample=True, temperature=0.09)
return tokenizer.decode(output[0], skip_special_tokens=True)
# In[9]:
def inference(title, image,
tokenizer1=tokenizer1, tokenizer2=tokenizer2, tokenizer_gen=tokenizer_gen,
model_gen=model_gen, model=model,
genres=genres, device=device):
title_input = tokenizer1(title, return_tensors='pt', padding=True, truncation=True)
title_input_ids = title_input['input_ids'].to(device)
title_attention_mask = title_input['attention_mask'].to(device)
plot = generate_plot(title, model_gen, tokenizer_gen, device)
plot_input = tokenizer2(plot, return_tensors='pt', padding=True, truncation=True)
plot_input_ids = plot_input['input_ids'].to(device)
plot_attention_mask = plot_input['attention_mask'].to(device)
# If image is not uploaded
if image is None:
image_input = torch.zeros((1, 3, 224, 224)).to(device)
else:
image_input = image.resize((224, 224))
image_input = v2.ToTensor()(image_input)
image_input = image_input.unsqueeze(0)
image_input = image_input.to(device)
output = model(title_input_ids, title_attention_mask, plot_input_ids, plot_attention_mask, image_input)
output = torch.sigmoid(output)
output = output.cpu().detach().numpy()
output = np.where(output > 0.5, 1, 0)
output = output.squeeze()
output = np.where(output == 1)[0]
output = [genres[i] for i in output]
return output
# In[10]:
app = gr.Interface(fn=inference, inputs=["text", "pil"], outputs="text", title="Movie Genre Classification",
description="This model classifies the genre of a movie based on its title and poster.",
examples=[["The Matrix", "https://upload.wikimedia.org/wikipedia/en/c/c1/The_Matrix_Poster.jpg"],
["The Dark Knight", "https://upload.wikimedia.org/wikipedia/en/1/1c/The_Dark_Knight_%282008_film%29.jpg"],
["The Godfather", "https://upload.wikimedia.org/wikipedia/en/1/1c/Godfather_ver1.jpg"],
["The Shawshank Redemption", "https://upload.wikimedia.org/wikipedia/en/8/81/ShawshankRedemptionMoviePoster.jpg"],
["The Lord of the Rings: The Return of the King", "https://upload.wikimedia.org/wikipedia/en/2/23/The_Lord_of_the_Rings%2C_TROTK_%282003%29.jpg"],
["The Godfather: Part II", "https://upload.wikimedia.org/wikipedia/en/0/03/Godfather_part_ii.jpg"]])
# In[11]:
app.launch(share=True)
|