Spaces:
Sleeping
Sleeping
File size: 30,917 Bytes
bb887c7 6357dc8 55b11da 6357dc8 bb887c7 7087711 bb887c7 6357dc8 7087711 bb887c7 86b37b7 6357dc8 86b37b7 806413c 6357dc8 bb887c7 86b37b7 806413c bb887c7 806413c 6357dc8 bb887c7 806413c bb887c7 806413c bb887c7 6357dc8 bb887c7 6357dc8 bb887c7 806413c bb887c7 6357dc8 bb887c7 6357dc8 55b11da 6357dc8 55b11da 6357dc8 55b11da 6357dc8 55b11da 806413c 55b11da 6357dc8 7087711 6357dc8 806413c 6357dc8 55b11da 6357dc8 7087711 6357dc8 7087711 6357dc8 bb887c7 806413c 6357dc8 bb887c7 6357dc8 bb887c7 806413c bb887c7 6357dc8 55b11da 806413c 7087711 6357dc8 7087711 6357dc8 bb887c7 6357dc8 55b11da 6357dc8 55b11da 6357dc8 55b11da 6357dc8 bb887c7 6357dc8 846a2ba 6357dc8 846a2ba 6357dc8 846a2ba 6357dc8 7917581 6357dc8 7087711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import streamlit as st
from streamlit_option_menu import option_menu
from streamlit_extras.switch_page_button import switch_page
import time
import base64
from pymongo import MongoClient
import hashlib
import os
import easyocr
import difflib
from llama_index.core import VectorStoreIndex, Document, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.mistralai import MistralAI
from translate import Translator
from dotenv import load_dotenv
import re
from streamlit.components.v1 import html
import ast
import json
import uuid
# Connect to MongoDB
client = MongoClient(os.getenv("MONGODB_URI"))
db = client.Health
customer_collection = db.customer
product_collection = db.product
# Initialize OCR and LlamaIndex models
reader = easyocr.Reader(['en'])
embedding_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")
llm = MistralAI(api_key=os.getenv("MISTRAL_API_KEY"))
# Set the embedding model and LLM globally
Settings.embed_model = embedding_model
Settings.llm = llm
# Function to hash passwords
def hash_password(password):
return hashlib.sha256(password.encode()).hexdigest()
# Function to check hashed passwords
def check_password(stored_password, provided_password):
return stored_password == hash_password(provided_password)
# Function to calculate BMI
def calculate_bmi(weight, height):
height_in_meters = height / 100
bmi = weight / (height_in_meters ** 2)
return round(bmi, 2)
# Function to correct OCR mistakes
nutritional_terms = [
"calories", "fat", "trans fat", "saturated fat", "cholesterol",
"sodium", "carbohydrates", "sugar", "protein", "fiber", "vitamin", "iron"
]
def correct_ocr_mistakes(text):
corrected_text = []
for word in text.split():
closest_match = difflib.get_close_matches(word.lower(), nutritional_terms, n=1, cutoff=0.7)
corrected_text.append(closest_match[0] if closest_match else word)
return ' '.join(corrected_text)
# Function to fetch user details
def fetch_user_details(email):
return customer_collection.find_one({"email": email})
# Function to analyze food label and user profile
def prepare_data_for_rag(ocr_text, user_profile):
documents = [
Document(text=f"OCR corrected text from food label: {ocr_text}"),
Document(text=f"User Profile: {user_profile}")
]
return documents
def analyze_with_llama_index(ocr_text, user_profile):
documents = prepare_data_for_rag(ocr_text, user_profile)
index = VectorStoreIndex.from_documents(documents)
query = query = """
You are tasked with analyzing the contents of a food label and evaluating its healthiness for a specific user.
1. **Health Rating:**
- Give Rating in large size text
- Based on the corrected food label and the user's dietary preferences, health goals, allergies, and activity level, assign a health rating on a scale from 1 to 10 (where 10 is the healthiest).
- If the food contains any ingredients to which the user is allergic (e.g., food contains peanuts and user has a nut allergy), assign a health rating of **0/10** and include a clear warning and also before doing this be double sure that the food has a substance to which the user is allergic .
- If the food does not have an allergen to which the user is allergic to and yet the user should avoid the food altogether, assign a rating from 1 to 4.
- If the user should consume the food in moderation, assign a rating from 5 to 7.
- If the user can consume the food frequently, assign a rating from 8 to 10.
2. **Health Analysis:**
- *Detailed Breakdown*: Present a statistical breakdown of the food's nutritional content in bullet format (e.g., "The food contains 2% saturated fat, 12g sugar, and 10g protein"). Ensure all terms and values are correctly spelled and reflect the accurate content of the food item.
- *Personalized Evaluation*: Explain why the food item is either good or bad for the user based on their specific health profile. Double check if there actually is an item in food to which user is allergic to. Identify any ingredients or nutritional aspects that align well or poorly with the user's dietary needs (e.g., "This food is high in sugar, which may not align with your goal of maintaining stable blood sugar levels"). **If the food contains an allergen, make sure to emphasize that.ze the risk for the user.
- *Advice*: Provide guidance on whether the user should consume this food frequently, in moderation, or avoid it altogether, considering their health goals, dietary restrictions, and any allergens. **If the food contains an allergen, recommend avoiding it entirely and issue a warning in the conclusion.
if you mention any of the user's allergies or health conditions or health goals dont write them in list format if there is more than one. Just write them in a string.
Ensure that the output is free from spelling mistakes and important points or warnings are clearly communicated with bold keywords and underline relevant details.
"""
query_engine = index.as_query_engine()
response = query_engine.query(query)
return response.response
# Function for food label analysis
def analyze_food_label(image_path, email):
result = reader.readtext(image_path)
ocr_text = ' '.join([res[1] for res in result])
corrected_text = correct_ocr_mistakes(ocr_text)
user = fetch_user_details(email)
if user:
user_profile = {
"BMI": user.get("bmi", "Not provided"),
"Allergies": user.get("allergies", []), # Now a list
"Health Conditions": user.get("health_conditions", []), # Now a list
"Dietary Preferences": user.get("dietary_preferences", "None"),
"Activity Level": user.get("activity_level", "Moderate"),
"Health Goals": user.get("health_goals", ["General well-being"]) # Assuming this is already a list
}
llama_output = analyze_with_llama_index(corrected_text, user_profile)
return llama_output
else:
return None
def update_user_profile(email, updated_data):
customer_collection.update_one({"email": email}, {"$set": updated_data})
# Function to translate text using the translate library
def translate_text(text, target_lang):
translator = Translator(to_lang=target_lang)
max_length = 500
translated_text = ""
try:
# Split the text into chunks of max_length characters
chunks = [text[i:i+max_length] for i in range(0, len(text), max_length)]
# Translate each chunk separately
for chunk in chunks:
translation = translator.translate(chunk)
translated_text += translation
return translated_text
except Exception as e:
return f"Translation error: {str(e)}"
def product_exists(product_name, brand_name):
existing_product = product_collection.find_one({
"Product Name": product_name,
"Brand Name": brand_name
})
return existing_product is not None
# Function to update product database
def update_product_database(ocr_text, product_type=None, consumption_frequency=None):
documents = [Document(text=f"OCR text from food label: {ocr_text}")]
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
query = """
You are tasked with correcting and structuring the OCR text from a food label. Please:
1. Correct any spelling mistakes or grammatical errors in the OCR text.
2. Extract and structure the following information:
- Product Name
- Brand Name (look for company names following by "manufactured by" or "owned by" or "produced by")
- Weight in Grams/ML
- Nutritional information: Include the serving size (e.g., "per 100g", "per 200ml") as specified on the label. If multiple serving sizes are given, use the one that provides the most comprehensive nutritional breakdown.
- Ingredients
- Product Category
- Proprietary Claims: Include any claims such as "sugar-free", "low-fat", etc. If no such claims are present, leave this field empty.
3. Present the information as a Python dictionary. The 'Nutritional information' should be a nested dictionary with the serving size as the key and the nutritional details as the value. Do not include any additional text, markdown formatting, or code blocks. Just return the dictionary.
Example format:
{
"Product Name": "Example Cereal",
"Brand Name": "HealthyBrands",
"Weight": "500g",
"Nutritional information": {
"per 100g": {
"Energy": "370kcal",
"Protein": "8g",
"Carbohydrates": "80g",
"Fat": "2g"
}
},
"Ingredients": "Whole grain wheat, sugar, salt",
"Product Category": "Breakfast Cereal",
"Proprietary Claims": "High in fiber, Low in fat"
}
If certain information is not available in the OCR text, use "Not specified" as the value for that key.
"""
response = query_engine.query(query)
# Extract the dictionary from the response
dict_match = re.search(r'\{.*\}', response.response, re.DOTALL)
if dict_match:
try:
product_info = ast.literal_eval(dict_match.group())
except:
st.error("Failed to parse the AI response. Please try again.")
return None
else:
st.error("Could not extract product information from the AI response. Please try again.")
return None
if product_type and consumption_frequency:
product_info['product_type'] = product_type
product_info['consumption_frequency'] = consumption_frequency
return product_info
#Custom CSS
def local_css(file_name):
with open(file_name, "r") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
def add_video_background():
st.markdown("""
<style>
body {
background-color: transparent !important;
}
.reportview-container {
background-color: transparent !important;
}
.block-container {
background-color: transparent !important;
}
#myVideo {
position: fixed;
right: 0;
bottom: 0;
min-width: 100%;
min-height: 100%;
z-index: -1;
}
.content {
position: fixed;
bottom: 0;
background: rgba(0, 0, 0, 0.5);
color: #000000;
width: 100%;
padding: 20px;
}
</style>
<video autoplay muted loop id="myVideo">
<source src="https://www.spinat.fr/wp-content/uploads/2020/11/green-color-powder-explosion-on-black-isolated-bac-A5B68UY.webmhd.mp4" type="video/mp4">
Your browser does not support HTML5 video.
</video>
""", unsafe_allow_html=True)
# Navigation bar
def navigation():
selected = option_menu(
menu_title=None,
options=["Home", "About", "Login", "Register"],
icons=["house", "info-circle", "box-arrow-in-right", "person-plus"],
menu_icon="cast",
default_index=0,
orientation="horizontal",
styles={
"container": {"padding": "0!important", "background-color": "transparent"},
"icon": {"color": "#013220", "font-size": "25px"},
"nav-link": {"font-size": "16px", "text-align": "centre", "margin":"0px", "--hover-color": "#378B29"},
"nav-link-selected": {"background-color": "#4CAF50", "border": "2px solid black", "color": "black"},
}
)
return selected
# Home page
def home():
st.markdown('<div class="home-container"><h1 class="animated-text">LabelWise: An AI Powered Food Label Analyzer</h1></div>', unsafe_allow_html=True)
st.markdown('<div class="home-container subtext" style="font-size: 1.5rem;">Empowering Healthy Choices, One Label at a Time!</div>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
if st.button("Get Started", key="get_started"):
st.session_state.show_steps = True
st.session_state.show_about = False
with col2:
if st.button("Learn More", key="learn_more"):
st.session_state.show_about = True
st.session_state.show_steps = False
if 'show_steps' in st.session_state and st.session_state.show_steps:
with st.container():
if register():
st.session_state.show_steps = False
#st.rerun()
if st.button("Close Registration Form"):
st.session_state.show_steps = False
st.rerun()
if 'show_about' in st.session_state and st.session_state.show_about:
with st.container():
st.markdown('<h1 style="font-size: 2.5rem;">About LabelWise</h1>', unsafe_allow_html=True)
st.write("""
LabelWise is a food label analysis tool that empowers users to make informed health decisions. It focuses on the following key functionalities:
1. Food Label Scanning: Uses Optical Character Recognition (OCR) to scan and extract information from food labels quickly.
2. Nutritional Information: Provides detailed nutritional breakdowns, including calories, fats, carbohydrates, and protein content.
3. Health Evaluation: Assesses the healthiness of food items based on user profiles and dietary preferences.
4. Error Correction: Automatically corrects OCR errors to ensure accurate information.
5. Personalized Recommendations: Suggests healthier alternatives tailored to individual dietary needs and goals.
6. User-Friendly Design: Features an intuitive interface for easy navigation and quick access to information.
LabelWise is dedicated to helping users make healthier food choices by providing accurate, actionable insights directly from food labels.
Start your journey to a healthier you today!
""")
if st.button("Close About Section"):
st.session_state.show_about = False
st.rerun()
# About page
def about():
st.markdown('<h1 style="font-size: 3,5rem;">About LabelWise</h1>', unsafe_allow_html=True)
st.write("""
LabelWise is a food label analysis tool that empowers users to make informed health decisions. It focuses on the following key functionalities:
1. Food Label Scanning: Uses Optical Character Recognition (OCR) to scan and extract information from food labels quickly.
2. Nutritional Information: Provides detailed nutritional breakdowns, including calories, fats, carbohydrates, and protein content.
3. Health Evaluation: Assesses the healthiness of food items based on user profiles and dietary preferences.
4. Error Correction: Automatically corrects OCR errors to ensure accurate information.
5. Personalized Recommendations: Suggests healthier alternatives tailored to individual dietary needs and goals.
6. User-Friendly Design: Features an intuitive interface for easy navigation and quick access to information.
LabelWise is dedicated to helping users make healthier food choices by providing accurate, actionable insights directly from food labels.
Start your journey to a healthier you today!
""")
# Login page
def login():
st.markdown('<h2 style="font-size: 2.5rem;">User Login</h2>', unsafe_allow_html=True)
email = st.text_input("Email", key="login_email")
password = st.text_input("Password", type="password", key="login_password")
if st.button("Login"):
user = fetch_user_details(email)
if user and check_password(user['password'], password):
st.session_state.logged_in = True
st.session_state.user_email = email
st.success(f"Welcome back, {user['name']}!")
st.rerun()
else:
st.error("Invalid email or password!")
# Register page
def register():
st.markdown('<h2 style="font-size: 2.5rem;">User Registration</h2>', unsafe_allow_html=True)
st.info("Password must be at least 8 characters long and contain at least one uppercase letter, one digit, and one special character.")
with st.form("registration_form"):
name = st.text_input("Name *", key="register_name")
email = st.text_input("Email *", key="register_email")
password = st.text_input("Password *", type="password", key="register_password")
confirm_password = st.text_input("Confirm Password *", type="password", key="confirm_password")
age = st.number_input("Age *", min_value=1, max_value=120, key="register_age")
height = st.number_input("Height (in cm) *", min_value=50, max_value=250, key="register_height")
weight = st.number_input("Weight (in kg) *", min_value=10, max_value=300, key="register_weight")
# Modified input for allergies
allergies = st.text_area("Allergies (if any, one per line)", key="register_allergies")
# Modified input for health conditions
health_conditions = st.text_area("Health Conditions (if any, one per line)", key="register_health_conditions")
activity_level = st.selectbox("Activity Level", ["Low", "Moderate", "High"], key="register_activity_level")
dietary_preferences = st.selectbox("Dietary Preferences", ["No preference","Vegetarian", "Vegan", "Gluten-Free", "Keto", "Paleo"], key="register_dietary_preferences")
health_goals = st.multiselect("Health Goals", ["Lose weight", "Gain muscle", "Maintain weight", "Improve stamina", "General well-being"], key="register_health_goals")
submitted = st.form_submit_button("Register")
if submitted:
# Check if email is already registered
existing_user = customer_collection.find_one({"email": email})
if existing_user:
st.error("This email is already registered. Please use a different email.")
return
# Validate password strength
if password != confirm_password:
st.error("Passwords do not match!")
elif not validate_password_strength(password):
st.error("Password must be at least 8 characters long, contain one uppercase letter, one special character, and one digit.")
else:
bmi = calculate_bmi(weight, height)
# Process allergies and health conditions
allergies_list = [allergy.strip() for allergy in allergies.split('\n') if allergy.strip()]
health_conditions_list = [condition.strip() for condition in health_conditions.split('\n') if condition.strip()]
user_data = {
"name": name,
"email": email,
"password": hash_password(password),
"age": age,
"height": height,
"weight": weight,
"bmi": bmi,
"allergies": allergies_list,
"health_conditions": health_conditions_list,
"activity_level": activity_level,
"dietary_preferences": dietary_preferences,
"health_goals": health_goals
}
customer_collection.insert_one(user_data)
st.success(f"Registration successful! Your BMI is {bmi}. Please log in.")
return True
return False
def validate_password_strength(password):
if len(password) < 8:
return False
if not re.search(r'[A-Z]', password):
return False
if not re.search(r'\d', password):
return False
if not re.search(r'[!@#$%^&*(),.?":{}|<>]', password):
return False
return True
def is_valid_password(password):
return (len(password) >= 8 and
re.search(r"[A-Z]", password) and
re.search(r"\d", password) and
re.search(r"[!@#$%^&*(),.?\":{}|<>]", password))
def check_email_exists(email):
existing_user = customer_collection.find_one({"email": email})
st.write(f"Checking email: {email}")
st.write(f"User exists: {existing_user is not None}")
return existing_user is not None
def main():
st.set_page_config(layout="wide", page_icon="🥑")
add_video_background()
local_css("style.css")
# Initialize session state variables
if "page" not in st.session_state:
st.session_state.page = "Home"
if "logged_in" not in st.session_state:
st.session_state.logged_in = False
if "user_email" not in st.session_state:
st.session_state.user_email = None
if "analysis_result" not in st.session_state:
st.session_state.analysis_result = None
if "new_product_info" not in st.session_state:
st.session_state.new_product_info = None
if "show_steps" not in st.session_state:
st.session_state.show_steps = False
if "show_about" not in st.session_state:
st.session_state.show_about = False
if "prev_page" not in st.session_state:
st.session_state.prev_page = "Home"
selected = navigation()
if "show_steps" not in st.session_state:
st.session_state.show_steps = False
if selected != "Home" and st.session_state.prev_page == "Home":
st.session_state.show_steps = False
st.session_state.show_about = False
# Update the previous page
st.session_state.prev_page = selected
if not st.session_state.logged_in:
if selected == "Home":
home()
elif selected == "About":
about()
elif selected == "Login":
login()
elif selected == "Register":
register()
else:
if selected == "Home":
home()
elif selected == "About":
about()
else:
st.success(f"Welcome back, {st.session_state.user_email}!")
# Profile Update Section
st.subheader("Update Your Profile")
update_profile = st.checkbox("Edit Profile")
if update_profile:
user = fetch_user_details(st.session_state.user_email)
with st.form("profile_update_form"):
st.subheader("Update Your Profile")
name = st.text_input("Name", value=user.get('name', ''))
age = st.number_input("Age", value=user.get('age', 0), min_value=1, max_value=120)
height = st.number_input("Height (in cm)", value=user.get('height', 0), min_value=50, max_value=250)
weight = st.number_input("Weight (in kg)", value=user.get('weight', 0), min_value=10, max_value=300)
# Convert allergies list to string for display
allergies_str = ', '.join(user.get('allergies', []))
allergies = st.text_area("Allergies (one per line)", value=allergies_str)
# Convert health conditions list to string for display
health_conditions_str = ', '.join(user.get('health_conditions', []))
health_conditions = st.text_area("Health Conditions (one per line)", value=health_conditions_str)
activity_level = st.selectbox("Activity Level", ["Low", "Moderate", "High"],
index=["Low", "Moderate", "High"].index(user.get('activity_level', 'Moderate')))
dietary_preferences = st.selectbox("Dietary Preferences",
["Vegetarian", "Vegan", "Gluten-Free", "Keto", "Paleo", "No preference"],
index=["Vegetarian", "Vegan", "Gluten-Free", "Keto", "Paleo", "No preference"].index(user.get('dietary_preferences', 'No preference')))
# Convert health goals list to indices for multiselect
all_health_goals = ["Lose weight", "Gain muscle", "Maintain weight", "Improve stamina", "General well-being"]
user_health_goals = user.get('health_goals', ['General well-being'])
# Ensure that user_health_goals only contains valid options
valid_user_health_goals = [goal for goal in user_health_goals if goal in all_health_goals]
# If no valid goals are found, default to "General well-being"
if not valid_user_health_goals:
valid_user_health_goals = ["General well-being"]
health_goals = st.multiselect("Health Goals", all_health_goals, default=valid_user_health_goals)
# Submit button inside the form
update_submitted = st.form_submit_button("Update Profile")
# Form processing outside the form
if update_submitted:
bmi = calculate_bmi(weight, height)
updated_data = {
"name": name,
"age": age,
"height": height,
"weight": weight,
"bmi": bmi,
"allergies": [allergy.strip() for allergy in allergies.split('\n') if allergy.strip()],
"health_conditions": [condition.strip() for condition in health_conditions.split('\n') if condition.strip()],
"activity_level": activity_level,
"dietary_preferences": dietary_preferences,
"health_goals": health_goals
}
update_user_profile(st.session_state.user_email, updated_data)
st.success(f"Profile updated successfully! Your new BMI is {bmi}.")
st.rerun()
# Food Label Analysis Section
st.subheader("Upload Food Label for Analysis")
product_name_input = st.text_input("Product Name").lower()
uploaded_file = st.file_uploader("Upload Food Label Image", type=["jpg", "jpeg", "png"])
if uploaded_file and product_name_input:
image_path = os.path.join("temp", uploaded_file.name)
os.makedirs("temp", exist_ok=True)
with open(image_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.success(f"Image '{uploaded_file.name}' uploaded successfully!")
if st.button("Analyze Food Label"):
with st.spinner("Analyzing food label..."):
result = reader.readtext(image_path)
ocr_text = ' '.join([res[1] for res in result])
analysis_result = analyze_food_label(image_path, st.session_state.user_email)
if analysis_result:
st.session_state.analysis_result = analysis_result
st.write(analysis_result)
product_info = update_product_database(ocr_text)
if product_info:
product_info["Product Name"] = product_name_input
brand_name = product_info.get("Brand Name", "Not specified")
if not product_exists(product_name_input, brand_name):
st.session_state.new_product_info = product_info
st.rerun()
else:
st.info("This product is already in our database.")
else:
st.error("Failed to extract product information. Please try again.")
else:
st.error("Error analyzing food label. Please try again.")
# Handle new product information
if st.session_state.new_product_info:
st.subheader("Food Label Analysis")
st.write(st.session_state.analysis_result)
st.info("This product is not in our database. Please provide additional information:")
with st.form(key='product_info_form'):
product_type = st.selectbox("Product Type", ["Nutritional", "Regular", "Recreational"])
consumption_frequency = st.selectbox("Consumption Frequency", ["Daily", "Weekly", "Monthly"])
submit_button = st.form_submit_button(label='Add to Database')
if submit_button:
st.session_state.new_product_info['product_type'] = product_type
st.session_state.new_product_info['consumption_frequency'] = consumption_frequency
product_collection.insert_one(st.session_state.new_product_info)
st.success("Thank you for contributing! Product information successfully added to the database.")
st.session_state.new_product_info = None
st.rerun()
# Translation Section
if st.session_state.analysis_result:
st.subheader("Translate Analysis")
languages = {
"Hindi": "hi", "Bengali": "bn", "Telugu": "te", "Marathi": "mr", "Tamil": "ta",
"Urdu": "ur", "Gujarati": "gu", "Kannada": "kn", "Odia": "or", "Malayalam": "ml",
"Spanish": "es", "French": "fr", "German": "de", "Chinese": "zh", "Japanese": "ja"
}
target_lang = st.selectbox("Select language for translation:", list(languages.keys()))
if st.button("Translate"):
with st.spinner("Translating..."):
translated_result = translate_text(st.session_state.analysis_result, languages[target_lang])
if translated_result.startswith("Translation error"):
st.error(translated_result)
else:
st.subheader(f"Translated Analysis ({target_lang}):")
st.write(translated_result)
# Logout button
if st.button("Logout"):
st.session_state.logged_in = False
st.session_state.user_email = None
st.session_state.analysis_result = None
st.session_state.new_product_info = None
st.rerun()
if __name__ == "__main__":
main()
favicon_html = """
<link rel="icon" href="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text y=%22.9em%22 font-size=%2290%22>🥑</text></svg>">
"""
html(favicon_html) |