File size: 13,384 Bytes
786cb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2310b0
786cb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70761cd
786cb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import gradio as gr
import json
import torch
import wavio
from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from pydub import AudioSegment
from gradio import Markdown
import spaces

import torch
#from diffusers.models.autoencoder_kl import AutoencoderKL
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers import DiffusionPipeline,AudioPipelineOutput
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
from typing import Union
from diffusers.utils.torch_utils import randn_tensor
from tqdm import tqdm





class TangoPipeline(DiffusionPipeline):

    
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: T5EncoderModel,
        tokenizer: Union[T5Tokenizer, T5TokenizerFast],
        unet: UNet2DConditionModel,
        scheduler: DDPMScheduler
    ):
        
        super().__init__()
    
        self.register_modules(vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler
        )
        
    
    def _encode_prompt(self, prompt):
        device = self.text_encoder.device
        
        batch = self.tokenizer(
            prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
        )
        input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)

       
        encoder_hidden_states = self.text_encoder(
                input_ids=input_ids, attention_mask=attention_mask
            )[0]

        boolean_encoder_mask = (attention_mask == 1).to(device)
        
        return encoder_hidden_states, boolean_encoder_mask
        
    def _encode_text_classifier_free(self, prompt, num_samples_per_prompt):
        device = self.text_encoder.device
        batch = self.tokenizer(
            prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
        )
        input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)

        with torch.no_grad():
            prompt_embeds = self.text_encoder(
                input_ids=input_ids, attention_mask=attention_mask
            )[0]
                
        prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
        attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)

        # get unconditional embeddings for classifier free guidance
        uncond_tokens = [""] * len(prompt)

        max_length = prompt_embeds.shape[1]
        uncond_batch = self.tokenizer(
            uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
        )
        uncond_input_ids = uncond_batch.input_ids.to(device)
        uncond_attention_mask = uncond_batch.attention_mask.to(device)

        with torch.no_grad():
            negative_prompt_embeds = self.text_encoder(
                input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
            )[0]
                
        negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
        uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)

        # For classifier free guidance, we need to do two forward passes.
        # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
        prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
        boolean_prompt_mask = (prompt_mask == 1).to(device)

        return prompt_embeds, boolean_prompt_mask
        
    def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
        shape = (batch_size, num_channels_latents, 256, 16)
        latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * inference_scheduler.init_noise_sigma
        return latents
    
    @torch.no_grad()
    def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, 
                  disable_progress=True):
        device = self.text_encoder.device
        classifier_free_guidance = guidance_scale > 1.0
        batch_size = len(prompt) * num_samples_per_prompt

        if classifier_free_guidance:
            prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt)
        else:
            prompt_embeds, boolean_prompt_mask = self._encode_text(prompt)
            prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
            boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)

        inference_scheduler.set_timesteps(num_steps, device=device)
        timesteps = inference_scheduler.timesteps

        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)

        num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
        progress_bar = tqdm(range(num_steps), disable=disable_progress)

        for i, t in enumerate(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
            latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)

            noise_pred = self.unet(
                latent_model_input, t, encoder_hidden_states=prompt_embeds,
                encoder_attention_mask=boolean_prompt_mask
            ).sample

            # perform guidance
            if classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = inference_scheduler.step(noise_pred, t, latents).prev_sample

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
                progress_bar.update(1)

        return latents
        
    @torch.no_grad()
    def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
        """ Genrate audio for a single prompt string. """
        with torch.no_grad():
            latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
            mel = self.vae.decode_first_stage(latents)
            wave = self.vae.decode_to_waveform(mel)


        return AudioPipelineOutput(audios=wave)


# Automatic device detection
if torch.cuda.is_available():
    device_type = "cuda"
    device_selection = "cuda:0"
else:
    device_type = "cpu"
    device_selection = "cpu"

class Tango:
    def __init__(self, name="declare-lab/tango-music-af-ft-mc", device=device_selection):
        
        path = snapshot_download(repo_id=name)
        
        vae_config = json.load(open("{}/vae_config.json".format(path)))
        stft_config = json.load(open("{}/stft_config.json".format(path)))
        main_config = json.load(open("{}/main_config.json".format(path)))
        
        self.vae = AutoencoderKL(**vae_config).to(device)
        self.stft = TacotronSTFT(**stft_config).to(device)
        self.model = AudioDiffusion(**main_config).to(device)
        
        vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device)
        stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device)
        main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device)
        
        self.vae.load_state_dict(vae_weights)
        self.stft.load_state_dict(stft_weights)
        self.model.load_state_dict(main_weights)

        print ("Successfully loaded checkpoint from:", name)
        
        self.vae.eval()
        self.stft.eval()
        self.model.eval()
        
        self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler")
        
    def chunks(self, lst, n):
        """ Yield successive n-sized chunks from a list. """
        for i in range(0, len(lst), n):
            yield lst[i:i + n]
        
    def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
        """ Genrate audio for a single prompt string. """
        with torch.no_grad():
            latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
            mel = self.vae.decode_first_stage(latents)
            wave = self.vae.decode_to_waveform(mel)
        return wave[0]
    
    def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True):
        """ Genrate audio for a list of prompt strings. """
        outputs = []
        for k in tqdm(range(0, len(prompts), batch_size)):
            batch = prompts[k: k+batch_size]
            with torch.no_grad():
                latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
                mel = self.vae.decode_first_stage(latents)
                wave = self.vae.decode_to_waveform(mel)
                outputs += [item for item in wave]
        if samples == 1:
            return outputs
        else:
            return list(self.chunks(outputs, samples))

# Initialize TANGO

tango = Tango(device="cpu")
tango.vae.to(device_type)
tango.stft.to(device_type)
tango.model.to(device_type)

pipe = TangoPipeline(vae=tango.vae,
                      text_encoder=tango.model.text_encoder,
                      tokenizer=tango.model.tokenizer,
                      unet=tango.model.unet,
                      scheduler=tango.scheduler
                      )

    
@spaces.GPU(duration=120)
def gradio_generate(prompt, output_format, steps, guidance):
    output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above
    #output_wave = tango.generate(prompt, steps, guidance)
    # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
    output_wave = output_wave.audios[0]
    output_filename = "temp.wav"
    wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)

    if (output_format == "mp3"):
        AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3")
        output_filename = "temp.mp3"

    return output_filename


description_text = """
<p><a href="https://huggingface.co/spaces/declare-lab/Tango-Music-AF/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
Generate music using Tango-Music-AF by providing a text prompt. The model was trained on a combination of MusicCaps and synthetic corpus of captions for audio.
<br/><br/> This is the demo for Tango-Music-AF for text to music generation: <a href="https://arxiv.org/pdf/2406.15487">Read our paper.</a>
<p/>
"""
# Gradio input and output components
input_text = gr.Textbox(lines=2, label="Prompt")
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
output_audio = gr.Audio(label="Generated Audio", type="filepath")
denoising_steps = gr.Slider(minimum=100, maximum=200, value=100, step=1, label="Steps", interactive=True)
guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True)

# Gradio interface
gr_interface = gr.Interface(
    fn=gradio_generate,
    inputs=[input_text, output_format, denoising_steps, guidance_scale],
    outputs=[output_audio],
    title="Improving Text-To-Audio Models with Synthetic Captions",
    description=description_text,
    allow_flagging=False,
    examples=[
        ["The song has a traditional jazzy feel to it. The piano chord progression is bouncy and light. The electric guitar has a chorus applied to it, and we hear various licks being played."],
        ["This song is a fusion of alternative and folk genres, highlighting simple yet soulful melodies and minimalist instrumentals."],
        ["The instrumental music features an ensemble that resembles the orchestra. The melody is being played by a brass section while strings provide harmonic accompaniment."],
        ["This music is instrumental. The tempo is fast with a lively keyboard harmony, steady drumming, groovy bass lines and harmonica melodic. The song is fresh, groovy, sunny, happy; vivacious and spirited."],
    ],
    cache_examples="lazy", # Turn on to cache.
)

# Launch Gradio app
gr_interface.queue(10).launch()