File size: 16,143 Bytes
f1069cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
from multiprocessing.sharedctypes import Value
import torch
import torch.distributed.nn
from torch import distributed as dist, nn as nn
from torch.nn import functional as F
import numpy as np
from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score

try:
    import horovod.torch as hvd
except ImportError:
    hvd = None


def gather_features(
    audio_features,
    text_features,
    audio_features_mlp=None,
    text_features_mlp=None,
    local_loss=False,
    gather_with_grad=False,
    rank=0,
    world_size=1,
    use_horovod=False,
    mlp_loss=False,
):
    if use_horovod:
        assert hvd is not None, "Please install horovod"
        if gather_with_grad:
            all_audio_features = hvd.allgather(audio_features)
            all_text_features = hvd.allgather(text_features)
            if mlp_loss:
                all_audio_features_mlp = hvd.allgather(audio_features_mlp)
                all_text_features_mlp = hvd.allgather(text_features_mlp)
        else:
            with torch.no_grad():
                all_audio_features = hvd.allgather(audio_features)
                all_text_features = hvd.allgather(text_features)
                if mlp_loss:
                    all_audio_features_mlp = hvd.allgather(audio_features_mlp)
                    all_text_features_mlp = hvd.allgather(text_features_mlp)
            if not local_loss:
                # ensure grads for local rank when all_* features don't have a gradient
                gathered_audio_features = list(
                    all_audio_features.chunk(world_size, dim=0)
                )
                gathered_text_features = list(
                    all_text_features.chunk(world_size, dim=0)
                )
                gathered_audio_features[rank] = audio_features
                gathered_text_features[rank] = text_features
                all_audio_features = torch.cat(gathered_audio_features, dim=0)
                all_text_features = torch.cat(gathered_text_features, dim=0)
                if mlp_loss:
                    gathered_audio_features_mlp = list(
                        all_audio_features_mlp.chunk(world_size, dim=0)
                    )
                    gathered_text_features_mlp = list(
                        all_text_features_mlp.chunk(world_size, dim=0)
                    )
                    gathered_audio_features_mlp[rank] = audio_features_mlp
                    gathered_text_features_mlp[rank] = text_features_mlp
                    all_audio_features_mlp = torch.cat(
                        gathered_audio_features_mlp, dim=0
                    )
                    all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
    else:
        # We gather tensors from all gpus
        if gather_with_grad:
            all_audio_features = torch.cat(
                torch.distributed.nn.all_gather(audio_features), dim=0
            )
            all_text_features = torch.cat(
                torch.distributed.nn.all_gather(text_features), dim=0
            )
            if mlp_loss:
                all_audio_features_mlp = torch.cat(
                    torch.distributed.nn.all_gather(audio_features_mlp), dim=0
                )
                all_text_features_mlp = torch.cat(
                    torch.distributed.nn.all_gather(text_features_mlp), dim=0
                )
        else:
            gathered_audio_features = [
                torch.zeros_like(audio_features) for _ in range(world_size)
            ]
            gathered_text_features = [
                torch.zeros_like(text_features) for _ in range(world_size)
            ]
            dist.all_gather(gathered_audio_features, audio_features)
            dist.all_gather(gathered_text_features, text_features)
            if mlp_loss:
                gathered_audio_features_mlp = [
                    torch.zeros_like(audio_features_mlp) for _ in range(world_size)
                ]
                gathered_text_features_mlp = [
                    torch.zeros_like(text_features_mlp) for _ in range(world_size)
                ]
                dist.all_gather(gathered_audio_features_mlp, audio_features_mlp)
                dist.all_gather(gathered_text_features_mlp, text_features_mlp)
            if not local_loss:
                # ensure grads for local rank when all_* features don't have a gradient
                gathered_audio_features[rank] = audio_features
                gathered_text_features[rank] = text_features
                if mlp_loss:
                    gathered_audio_features_mlp[rank] = audio_features_mlp
                    gathered_text_features_mlp[rank] = text_features_mlp

            all_audio_features = torch.cat(gathered_audio_features, dim=0)
            all_text_features = torch.cat(gathered_text_features, dim=0)
            if mlp_loss:
                all_audio_features_mlp = torch.cat(gathered_audio_features_mlp, dim=0)
                all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
    if mlp_loss:
        return (
            all_audio_features,
            all_text_features,
            all_audio_features_mlp,
            all_text_features_mlp,
        )
    else:
        return all_audio_features, all_text_features


class ClipLoss(nn.Module):
    def __init__(
        self,
        local_loss=False,
        gather_with_grad=False,
        cache_labels=False,
        rank=0,
        world_size=1,
        use_horovod=False,
        mlp_loss=False,
        weight_loss_kappa=0,
    ):
        super().__init__()
        self.local_loss = local_loss
        self.gather_with_grad = gather_with_grad
        self.cache_labels = cache_labels
        self.rank = rank
        self.world_size = world_size
        self.use_horovod = use_horovod
        self.mlp_loss = mlp_loss
        self.weighted_loss = bool(weight_loss_kappa != 0)
        self.weight_loss_kappa = weight_loss_kappa
        # cache state
        self.prev_num_logits = 0
        self.labels = {}

    def forward(
        self,
        audio_features,
        text_features,
        logit_scale_a,
        logit_scale_t=None,
        audio_features_mlp=None,
        text_features_mlp=None,
    ):
        device = audio_features.device
        if self.mlp_loss:
            if self.world_size > 1:
                (
                    all_audio_features,
                    all_text_features,
                    all_audio_features_mlp,
                    all_text_features_mlp,
                ) = gather_features(
                    audio_features=audio_features,
                    text_features=text_features,
                    audio_features_mlp=audio_features_mlp,
                    text_features_mlp=text_features_mlp,
                    local_loss=self.local_loss,
                    gather_with_grad=self.gather_with_grad,
                    rank=self.rank,
                    world_size=self.world_size,
                    use_horovod=self.use_horovod,
                    mlp_loss=self.mlp_loss,
                )
                if self.local_loss:
                    a_logits_per_audio = (
                        logit_scale_a * audio_features @ all_text_features_mlp.T
                    )
                    a_logits_per_text = (
                        logit_scale_a * text_features_mlp @ all_audio_features.T
                    )
                    t_logits_per_audio = (
                        logit_scale_t * audio_features_mlp @ all_text_features.T
                    )
                    t_logits_per_text = (
                        logit_scale_t * text_features @ all_audio_features_mlp.T
                    )
                else:
                    a_logits_per_audio = (
                        logit_scale_a * all_audio_features @ all_text_features_mlp.T
                    )
                    a_logits_per_text = a_logits_per_audio.T
                    t_logits_per_audio = (
                        logit_scale_t * all_audio_features_mlp @ all_text_features.T
                    )
                    t_logits_per_text = t_logits_per_audio.T
            else:
                a_logits_per_audio = (
                    logit_scale_a * audio_features @ text_features_mlp.T
                )
                a_logits_per_text = logit_scale_a * text_features_mlp @ audio_features.T
                t_logits_per_audio = (
                    logit_scale_t * audio_features_mlp @ text_features.T
                )
                t_logits_per_text = logit_scale_t * text_features @ audio_features_mlp.T

            # calculated ground-truth and cache if enabled
            num_logits = a_logits_per_audio.shape[0]
            if self.prev_num_logits != num_logits or device not in self.labels:
                labels = torch.arange(num_logits, device=device, dtype=torch.long)
                if self.world_size > 1 and self.local_loss:
                    labels = labels + num_logits * self.rank
                if self.cache_labels:
                    self.labels[device] = labels
                    self.prev_num_logits = num_logits
            else:
                labels = self.labels[device]

            if not self.weighted_loss:
                total_loss = (
                    F.cross_entropy(a_logits_per_audio, labels)
                    + F.cross_entropy(a_logits_per_text, labels)
                    + F.cross_entropy(t_logits_per_audio, labels)
                    + F.cross_entropy(t_logits_per_text, labels)
                ) / 4
            else:
                audio_weight = (audio_features @ audio_features.T).detach()
                audio_weight = (
                    torch.exp(
                        torch.sum(audio_weight, axis=1)
                        / (self.weight_loss_kappa * len(audio_weight))
                    )
                ).detach()
                text_weight = (text_features @ text_features.T).detach()
                text_weight = (
                    torch.exp(
                        torch.sum(text_weight, axis=1)
                        / (self.weight_loss_kappa * len(text_features))
                    )
                ).detach()
                total_loss = (
                    F.cross_entropy(a_logits_per_audio, labels, weight=audio_weight)
                    + F.cross_entropy(a_logits_per_text, labels, weight=audio_weight)
                    + F.cross_entropy(t_logits_per_audio, labels, weight=text_weight)
                    + F.cross_entropy(t_logits_per_text, labels, weight=text_weight)
                ) / 4
        else:
            if self.world_size > 1:
                all_audio_features, all_text_features = gather_features(
                    audio_features=audio_features,
                    text_features=text_features,
                    local_loss=self.local_loss,
                    gather_with_grad=self.gather_with_grad,
                    rank=self.rank,
                    world_size=self.world_size,
                    use_horovod=self.use_horovod,
                    mlp_loss=self.mlp_loss,
                )

                if self.local_loss:
                    logits_per_audio = (
                        logit_scale_a * audio_features @ all_text_features.T
                    )
                    logits_per_text = (
                        logit_scale_a * text_features @ all_audio_features.T
                    )
                else:
                    logits_per_audio = (
                        logit_scale_a * all_audio_features @ all_text_features.T
                    )
                    logits_per_text = logits_per_audio.T
            else:
                logits_per_audio = logit_scale_a * audio_features @ text_features.T
                logits_per_text = logit_scale_a * text_features @ audio_features.T

            # calculated ground-truth and cache if enabled
            num_logits = logits_per_audio.shape[0]
            if self.prev_num_logits != num_logits or device not in self.labels:
                labels = torch.arange(num_logits, device=device, dtype=torch.long)
                if self.world_size > 1 and self.local_loss:
                    labels = labels + num_logits * self.rank
                if self.cache_labels:
                    self.labels[device] = labels
                    self.prev_num_logits = num_logits
            else:
                labels = self.labels[device]
            if not self.weighted_loss:
                total_loss = (
                    F.cross_entropy(logits_per_audio, labels)
                    + F.cross_entropy(logits_per_text, labels)
                ) / 2
            else:
                audio_weight = (all_audio_features @ all_audio_features.T).detach()
                audio_weight = (
                    torch.exp(
                        torch.sum(audio_weight, axis=1)
                        / (self.weight_loss_kappa * len(all_audio_features))
                    )
                ).detach()
                text_weight = (all_text_features @ all_text_features.T).detach()
                text_weight = (
                    torch.exp(
                        torch.sum(text_weight, axis=1)
                        / (self.weight_loss_kappa * len(all_text_features))
                    )
                ).detach()
                total_loss = (
                    F.cross_entropy(logits_per_audio, labels, weight=text_weight)
                    + F.cross_entropy(logits_per_text, labels, weight=audio_weight)
                ) / 2
        return total_loss


def lp_gather_features(pred, target, world_size=1, use_horovod=False):
    if use_horovod:
        assert hvd is not None, "Please install horovod"
        with torch.no_grad():
            all_preds = hvd.allgather(pred)
            all_targets = hvd.allgath(target)
    else:
        gathered_preds = [torch.zeros_like(pred) for _ in range(world_size)]
        gathered_targets = [torch.zeros_like(target) for _ in range(world_size)]

        dist.all_gather(gathered_preds, pred)
        dist.all_gather(gathered_targets, target)
        all_preds = torch.cat(gathered_preds, dim=0)
        all_targets = torch.cat(gathered_targets, dim=0)

    return all_preds, all_targets


def get_map(pred, target):
    pred = torch.sigmoid(pred).numpy()
    target = target.numpy()
    return np.mean(average_precision_score(target, pred, average=None))


def get_acc(pred, target):
    pred = torch.argmax(pred, 1).numpy()
    target = torch.argmax(target, 1).numpy()
    return accuracy_score(target, pred)


def get_mauc(pred, target):
    pred = torch.sigmoid(pred).numpy()
    target = target.numpy()
    return np.mean(roc_auc_score(target, pred, average=None))


class LPMetrics(object):
    def __init__(self, metric_names=["map", "acc", "mauc"]):
        self.metrics = []
        for name in metric_names:
            self.metrics.append(self.get_metric(name))
        self.metric_names = metric_names

    def get_metric(self, name):
        if name == "map":
            return get_map
        elif name == "acc":
            return get_acc
        elif name == "mauc":
            return get_mauc
        else:
            raise ValueError(f"the metric should be at least one of [map, acc, mauc]")

    def evaluate_mertics(self, pred, target):
        metric_dict = {}
        for i in range(len(self.metric_names)):
            metric_dict[self.metric_names[i]] = self.metrics[i](pred, target)
        return metric_dict


def calc_celoss(pred, target):
    target = torch.argmax(target, 1).long()
    return nn.CrossEntropyLoss()(pred, target)


class LPLoss(nn.Module):
    def __init__(self, loss_name):
        super().__init__()
        if loss_name == "bce":
            self.loss_func = nn.BCEWithLogitsLoss()
        elif loss_name == "ce":
            self.loss_func = calc_celoss
        elif loss_name == "mse":
            self.loss_func = nn.MSELoss()
        else:
            raise ValueError(f"the loss func should be at least one of [bce, ce, mse]")

    def forward(self, pred, target):
        loss = self.loss_func(pred, target)
        return loss