File size: 22,551 Bytes
f1069cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
from inspect import getargs
import logging
import os
import random
from datetime import datetime
import bisect
import copy
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch import optim
from torch.cuda.amp import GradScaler
import faulthandler
import pathlib

try:
    import wandb
except ImportError:
    wandb = None

try:
    import torch.utils.tensorboard as tensorboard
except ImportError:
    tensorboard = None

try:
    import horovod.torch as hvd
except ImportError:
    hvd = None

from open_clip import create_model_and_transforms, trace_model, create_model
from training.data import get_data
from training.distributed import is_master, init_distributed_device, world_info_from_env
from training.logger import setup_logging
from training.params import parse_args
from training.scheduler import cosine_lr
from training.train import train_one_epoch, evaluate
from open_clip.utils import dataset_split, get_optimizer


def maintain_ckpts(args, startidx, all_idx_len):
    for i in reversed(range(startidx, all_idx_len)):
        if os.path.exists(os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt")):
            os.rename(
                os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt"),
                os.path.join(args.checkpoint_path, f"epoch_top_{i+1}.pt"),
            )
    if os.path.exists(
        os.path.join(args.checkpoint_path, f"epoch_top_{all_idx_len}.pt")
    ):
        os.remove(os.path.join(args.checkpoint_path, f"epoch_top_{all_idx_len}.pt"))
    return


def update_top_k_performance(
    new_metrics_inputs, current_top_k_ckpt_metrics, args, ckpt, bignumbetter=True
):
    """
    Record the top-k performance of the current epoch.
    current_top_k_metrics is a dictionary of the form: {1: top_1_ckpt_measure, 2: top_2_ckpt_measure, ...}
    """
    if isinstance(new_metrics_inputs, (list, tuple)):
        new_metrics_inputs = np.mean(new_metrics_inputs)
        return update_top_k_performance(
            new_metrics_inputs,
            current_top_k_ckpt_metrics,
            args=args,
            ckpt=ckpt,
            bignumbetter=bignumbetter,
        )
    elif isinstance(new_metrics_inputs, dict):
        new_metrics_inputs = np.mean(list(new_metrics_inputs.values()))
        return update_top_k_performance(
            new_metrics_inputs,
            current_top_k_ckpt_metrics,
            args=args,
            ckpt=ckpt,
            bignumbetter=bignumbetter,
        )
    elif isinstance(new_metrics_inputs, (float, int)):
        update_flag = {k: False for k in current_top_k_ckpt_metrics.keys()}
        sorted_keys = sorted(current_top_k_ckpt_metrics.keys())
        sorted_values = sorted(
            current_top_k_ckpt_metrics.values(), reverse=bignumbetter
        )
        sorted_values_ = copy.deepcopy(sorted_values)
        sorted_values.append(new_metrics_inputs)
        sorted_values = sorted(sorted_values, reverse=bignumbetter)
        sorted_values = sorted_values[:-1]

        if sorted_values == sorted_values_:
            return current_top_k_ckpt_metrics, new_metrics_inputs
        else:
            for i in range(len(sorted_keys)):
                if current_top_k_ckpt_metrics[sorted_keys[i]] != sorted_values[i]:
                    current_top_k_ckpt_metrics[sorted_keys[i]] = sorted_values[i]
                    update_flag[sorted_keys[i]] = True
            for i in range(len(update_flag)):
                if update_flag[i]:
                    maintain_ckpts(args, i, len(sorted_keys))
                    torch.save(
                        ckpt,
                        os.path.join(args.checkpoint_path, f"epoch_top_{i}.pt"),
                    )
                    break
            return current_top_k_ckpt_metrics, new_metrics_inputs


# def updateifNone(a, b):
#     a = b if None else a
#     return a


def is_pretrained_params(n):
    return (
        n.startswith("transformer")
        or n in ["positional_embedding", "text_projection"]
        or n.startswith("token_embedding")
        or n.startswith("ln_final")
        or n.startswith("logit_scale_t")
    )


def random_seed(seed=42, rank=0):
    torch.manual_seed(seed + rank)
    np.random.seed(seed + rank)
    random.seed(seed + rank)


def main():
    args = parse_args()
    # sanitize model name for filesystem / uri use, easier if we don't use / in name as a rule?
    args.amodel = args.amodel.replace("/", "-")
    # download sizes.json file

    # (yusong): the below two lines are for debug
    # print("setting up faulthandler")
    # faulthandler.register(10)

    random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    if args.tmodel == "bert" or args.tmodel == "roberta" or args.tmodel == "bart":
        assert (
            args.pretrained == "" or args.pretrained is None
        ), "bert/roberta/bart text encoder does not support pretrained models."

    # get the name of the experiments
    if args.name is None:
        args.name = "-".join(
            [
                datetime.now().strftime("%Y_%m_%d-%H_%M_%S"),
                f"model_{args.amodel}",
                f"lr_{args.lr}",
                f"b_{args.batch_size}",
                f"j_{args.workers}",
                f"p_{args.precision}",
            ]
        )

    # discover initial world args early so we can log properly
    args.distributed = False
    args.local_rank, args.rank, args.world_size = world_info_from_env()

    if args.remotedata and is_master(args):
        for dataset_name in args.datasetnames:
            for split in dataset_split[dataset_name]:
                if not os.path.exists(f"./json_files/{dataset_name}/{split}"):
                    os.makedirs(f"./json_files/{dataset_name}/{split}")
                os.system(
                    f"aws s3 cp s3://s-laion-audio/webdataset_tar/{dataset_name}/{split}/sizes.json ./json_files/{dataset_name}/{split}/sizes.json"
                )

    args.log_path = None
    if is_master(args, local=args.log_local):
        log_base_path = os.path.join(args.logs, args.name)
        os.makedirs(log_base_path, exist_ok=True)
        log_filename = f"out-{args.rank}" if args.log_local else "out.log"
        args.log_path = os.path.join(log_base_path, log_filename)
        if os.path.exists(args.log_path):
            print(
                "Error. Experiment already exists. Use --name {} to specify a new experiment."
            )
            return -1

    # Set logger
    args.log_level = logging.DEBUG if args.debug else logging.INFO
    setup_logging(args.log_path, args.log_level)

    # fully initialize distributed device environment
    device = init_distributed_device(args)

    args.wandb = "wandb" in args.report_to or "all" in args.report_to
    args.tensorboard = "tensorboard" in args.report_to or "all" in args.report_to
    if is_master(args):
        args.tensorboard_path = (
            os.path.join(args.logs, args.name, "tensorboard")
            if args.tensorboard
            else ""
        )
        args.checkpoint_path = os.path.join(args.logs, args.name, "checkpoints")
        for dirname in [args.tensorboard_path, args.checkpoint_path]:
            if dirname:
                os.makedirs(dirname, exist_ok=True)
    else:
        args.tensorboard_path = ""
        args.checkpoint_path = ""

    if args.copy_codebase:
        copy_codebase(args)

    assert args.precision in ["amp", "fp16", "fp32"]
    if args.precision == "fp16":
        logging.warning(
            "It is recommended to use AMP mixed-precision instead of FP16. "
            "FP16 support needs further verification and tuning, especially for train."
        )

    if args.horovod:
        logging.info(
            f"Running in horovod mode with multiple processes / nodes. Device: {args.device}."
            f"Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}."
        )
    elif args.distributed:
        logging.info(
            f"Running in distributed mode with multiple processes. Device: {args.device}."
            f"Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}."
        )
    else:
        logging.info(f"Running with a single process. Device {args.device}.")

    logging.info(f"openai cache dir: {os.path.expanduser(args.openai_model_cache_dir)}")

    model, model_cfg = create_model(
        args.amodel,
        args.tmodel,
        args.pretrained,
        precision=args.precision,
        device=device,
        jit=args.torchscript,
        force_quick_gelu=args.force_quick_gelu,
        openai_model_cache_dir=os.path.expanduser(args.openai_model_cache_dir),
        skip_params=True,
        pretrained_audio=args.pretrained_audio,
        pretrained_text=args.pretrained_text,
        enable_fusion=args.enable_fusion,
        fusion_type=args.fusion_type,
    )

    if args.horovod:
        with torch.no_grad():
            for param in model.parameters():
                param.set_(param.contiguous())

    if args.trace:
        model = trace_model(model, batch_size=args.batch_size, device=device)

    if is_master(args):
        logging.info("Model:")
        logging.info(f"{str(model)}")
        logging.info("Params:")
        params_file = os.path.join(args.logs, args.name, "params.txt")
        with open(params_file, "w") as f:
            for name in sorted(vars(args)):
                val = getattr(args, name)
                logging.info(f"  {name}: {val}")
                f.write(f"{name}: {val}\n")

    if args.distributed and not args.horovod:
        if args.use_bn_sync:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        ddp_args = {}
        if args.ddp_static_graph:
            # this doesn't exist in older PyTorch, arg only added if enabled
            ddp_args["static_graph"] = True
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[device], find_unused_parameters=True, **ddp_args
        )

    data = get_data(args, model_cfg)
    assert len(data), "At least one train or eval dataset must be specified."
    if args.trace:
        assert "train" not in data, "Cannot train with traced model"

    exclude = (
        lambda n, p: p.ndim < 2
        or "bn" in n
        or "ln" in n
        or "bias" in n
        or "logit_scale" in n
    )
    include = lambda n, p: not exclude(n, p)

    named_parameters = list(model.named_parameters())

    # freeze text encoder
    text_freeze_parameters = [p for n, p in named_parameters if "text_branch" in n]

    if args.freeze_text:
        print("Freeze Text!!!!")
        for k in text_freeze_parameters:
            k.requires_grad = False

    gain_or_bias_params = [
        p for n, p in named_parameters if exclude(n, p) and p.requires_grad
    ]
    rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad]

    # set wd-related params to 0 if use adam optimizer
    if args.optimizer == "adam":
        args.wd = 0
        args.wd_pretrained = 0
        args.wd_new = 0

    if args.train_data is None:
        optimizer = None
        scheduler = None
    else:
        total_steps = data["train"].dataloader.num_batches * args.epochs

        if args.split_opt:
            for x in ["lr", "beta1", "beta2", "eps", "wd"]:
                for y in ["_new", "_pretrained"]:
                    if getattr(args, x + y) is None:
                        setattr(args, x + y, getattr(args, x))

            gain_or_bias_pretrained_params = [
                p
                for n, p in named_parameters
                if (exclude(n, p) and p.requires_grad) and is_pretrained_params(n)
            ]
            rest_pretrained_params = [
                p
                for n, p in named_parameters
                if (include(n, p) and p.requires_grad) and is_pretrained_params(n)
            ]
            gain_or_bias_new_params = [
                p
                for n, p in named_parameters
                if (exclude(n, p) and p.requires_grad) and (not is_pretrained_params(n))
            ]
            rest_new_params = [
                p
                for n, p in named_parameters
                if (include(n, p) and p.requires_grad) and (not is_pretrained_params(n))
            ]
            pretrained_params_optimizer = get_optimizer(
                [
                    {"params": gain_or_bias_pretrained_params, "weight_decay": 0.0},
                    {
                        "params": rest_pretrained_params,
                        "weight_decay": args.wd_pretrained,
                    },
                ],
                lr=args.lr_pretrained,
                betas=(args.beta1_pretrained, args.beta2_pretrained),
                eps=args.eps_pretrained,
                momentum=args.momentum_pretrained,
                optimizer_name=args.optimizer,
            )
            pretrained_params_scheduler = cosine_lr(
                pretrained_params_optimizer,
                args.lr_pretrained,
                args.warmup,
                total_steps,
            )
            new_params_optimizer = get_optimizer(
                [
                    {"params": gain_or_bias_new_params, "weight_decay": 0.0},
                    {"params": rest_new_params, "weight_decay": args.wd_new},
                ],
                lr=args.lr_new,
                betas=(args.beta1_new, args.beta2_new),
                eps=args.eps_new,
                momentum=args.momentum_new,
                optimizer_name=args.optimizer,
            )

            new_params_scheduler = cosine_lr(
                new_params_optimizer, args.lr_new, args.warmup, total_steps
            )

            optimizer = {
                "pretrained": pretrained_params_optimizer,
                "new": new_params_optimizer,
            }
            scheduler = {
                "pretrained": pretrained_params_scheduler,
                "new": new_params_scheduler,
            }

            if args.horovod:
                pretrained_params_optimizer = hvd.DistributedOptimizer(
                    pretrained_params_optimizer,
                    named_parameters=model.named_parameters(),
                )
                new_params_optimizer = hvd.DistributedOptimizer(
                    new_params_optimizer, named_parameters=model.named_parameters()
                )
                hvd.broadcast_parameters(model.state_dict(), root_rank=0)
                hvd.broadcast_optimizer_state(pretrained_params_optimizer, root_rank=0)
                hvd.broadcast_optimizer_state(new_params_optimizer, root_rank=0)
        else:
            optimizer = get_optimizer(
                [
                    {"params": gain_or_bias_params, "weight_decay": 0.0},
                    {"params": rest_params, "weight_decay": args.wd},
                ],
                lr=args.lr,
                betas=(args.beta1, args.beta2),
                eps=args.eps,
                momentum=args.momentum,
                optimizer_name=args.optimizer,
            )

            scheduler = cosine_lr(optimizer, args.lr, args.warmup, total_steps)

            if args.horovod:
                optimizer = hvd.DistributedOptimizer(
                    optimizer, named_parameters=model.named_parameters()
                )
                hvd.broadcast_parameters(model.state_dict(), root_rank=0)
                hvd.broadcast_optimizer_state(optimizer, root_rank=0)

    scaler = GradScaler() if args.precision == "amp" else None

    # optionally resume from a checkpoint
    start_epoch = 0
    if args.resume is not None:
        if os.path.isfile(args.resume):
            checkpoint = torch.load(args.resume, map_location=device)
            if "epoch" in checkpoint:
                # resuming a train checkpoint w/ epoch and optimizer state
                start_epoch = checkpoint["epoch"]
                sd = checkpoint["state_dict"]
                if not args.distributed and next(iter(sd.items()))[0].startswith(
                    "module"
                ):
                    sd = {k[len("module.") :]: v for k, v in sd.items()}
                model.load_state_dict(sd)
                if args.split_opt:
                    if optimizer is not None:
                        for k, o_ in optimizer.items():
                            o_.load_state_dict(checkpoint[k + "_" + "optimizer"])
                if optimizer is not None:
                    optimizer.load_state_dict(checkpoint["optimizer"])
                if scaler is not None and "scaler" in checkpoint:
                    scaler.load_state_dict(checkpoint["scaler"])
                logging.info(
                    f"=> resuming checkpoint '{args.resume}' (epoch {start_epoch})"
                )
            else:
                # loading a bare (model only) checkpoint for fine-tune or evaluation
                model.load_state_dict(checkpoint)
                logging.info(
                    f"=> loaded checkpoint '{args.resume}' (epoch {start_epoch})"
                )
            if args.freeze_text:
                print("Freeze Text!!!!")
                for k in text_freeze_parameters:
                    k.requires_grad = False
        else:
            logging.info("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True
    cudnn.deterministic = False

    # determine if this worker should save logs and checkpoints. only do so if it is rank == 0
    args.save_logs = args.logs and args.logs.lower() != "none" and is_master(args)
    writer = None
    if args.save_logs and args.tensorboard:
        assert tensorboard is not None, "Please install tensorboard."
        writer = tensorboard.SummaryWriter(args.tensorboard_path)

    if args.wandb and is_master(args):
        assert wandb is not None, "Please install wandb."
        logging.debug("Starting wandb.")
        args.train_sz = data["train"].dataloader.num_samples
        if args.val_data is not None:
            args.val_sz = data["val"].dataloader.num_samples
        # you will have to configure this for your project!
        wandb.init(
            project="clap",
            notes=args.wandb_notes,
            name=args.wandb_notes,
            tags=[],
            config=vars(args),
        )
        if args.debug:
            wandb.watch(model, log="all")
        wandb.save(params_file)
        logging.debug("Finished loading wandb.")

    if "train" not in data:
        evaluate(model, data, start_epoch, args, writer)
        return
    elif start_epoch == 0 and "val" in data and not args.no_eval:
        evaluate(model, data, 0, args, writer)
        #  print(f'rank {args.rank}, Start First Evaluation')#  (yusong): for debug
    if args.save_top_performance:
        current_top_k_ckpt_metrics = {
            i: 0 for i in range(args.save_top_performance)
        }  # initialize the top-k metric for ckpts to 0

    #  print(f'rank {args.rank}, Start Training') #  (yusong): for debug
    for epoch in range(start_epoch, args.epochs):
        # freeze the text param after (include) args.freeze_text_after, this is -1 by default
        if epoch == args.freeze_text_after:
            print("Text pretrained parameters are freezed since this epoch.")
            for k in text_freeze_parameters:
                k.requires_grad = False
        if is_master(args):
            logging.info(f"Start epoch {epoch}")

        train_one_epoch(model, data, epoch, optimizer, scaler, scheduler, args, writer)
        completed_epoch = epoch + 1

        if (
            any(v in data for v in ("val", "imagenet-val", "imagenet-v2"))
            and not args.no_eval
        ):
            metrics = evaluate(model, data, completed_epoch, args, writer)
            if args.save_top_performance:
                top_k_dataset = args.top_k_checkpoint_select_dataset
                top_k_metric = args.top_k_checkpoint_select_metric
                filtered_metrics = [
                    v
                    for k, v in metrics.items()
                    if top_k_metric in k and top_k_dataset in k
                ]  # check all R@10 metrics (all dataset) and use it to update the ckpt
        # Saving checkpoints.
        if args.save_logs:
            if args.split_opt:
                opt_dict = {
                    k + "_" + "optimizer": v.state_dict() for k, v in optimizer.items()
                }
            else:
                opt_dict = {"optimizer": optimizer.state_dict()}
            checkpoint_dict = {
                "epoch": completed_epoch,
                "name": args.name,
                "state_dict": model.state_dict(),
            }
            checkpoint_dict.update(opt_dict)
            if scaler is not None:
                checkpoint_dict["scaler"] = scaler.state_dict()

            if completed_epoch == args.epochs or (
                args.save_frequency > 0 and (completed_epoch % args.save_frequency) == 0
            ):
                torch.save(
                    checkpoint_dict,
                    os.path.join(args.checkpoint_path, f"epoch_{completed_epoch}.pt"),
                )
            if args.save_most_recent:
                torch.save(
                    checkpoint_dict,
                    os.path.join(args.checkpoint_path, f"epoch_latest.pt"),
                )
            if args.save_top_performance and not args.no_eval:
                update_top_k_performance(
                    filtered_metrics,
                    current_top_k_ckpt_metrics,
                    args,
                    checkpoint_dict,
                    bignumbetter=True,
                )

    if args.wandb and is_master(args):
        wandb.finish()


def copy_codebase(args):
    from shutil import copytree, ignore_patterns

    new_code_path = os.path.join(args.logs, args.name, "code")
    if os.path.exists(new_code_path):
        print(
            f"Error. Experiment already exists at {new_code_path}. Use --name to specify a new experiment."
        )
        return -1
    print(f"Copying codebase to {new_code_path}")
    current_code_path = os.path.realpath(__file__)
    for _ in range(3):
        current_code_path = os.path.dirname(current_code_path)
    copytree(
        current_code_path, new_code_path, ignore=ignore_patterns("log", "logs", "wandb")
    )
    print("Done copying code.")
    return 1


if __name__ == "__main__":
    main()