Spaces:
Running
on
L4
Running
on
L4
File size: 17,283 Bytes
f1069cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
import argparse
import os
CACHE_DIR = os.getenv(
"AUDIOLDM_CACHE_DIR",
"~/.cache")
def get_default_params(model_name):
# Params from paper (https://arxiv.org/pdf/2103.00020.pdf)
model_name = model_name.lower()
if "vit" in model_name:
return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.98, "eps": 1.0e-6}
else:
return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.999, "eps": 1.0e-8}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--train-data",
type=str,
default=None,
help="Path to h5 filewith training data",
)
parser.add_argument(
"--val-data",
type=str,
default=None,
help="Path to h5 file with validation data",
)
parser.add_argument(
"--freeze-text",
default=False,
action="store_true",
help="if you need to freeze the text encoder, make this True",
)
parser.add_argument(
"--freeze-text-after",
type=int,
default=-1,
help="if you need to freeze the text encoder after (include) epoch x, set this param to x. Set -1 to disable it",
)
parser.add_argument(
"--train-ipc",
type=str,
default=None,
help="Path to npy file of the number of instance per class in training data",
)
parser.add_argument(
"--val-ipc",
type=str,
default=None,
help="Path to npy file of the number of instance per class in validation data",
)
parser.add_argument(
"--train-num-samples",
type=int,
default=None,
help="Number of samples in dataset. Required for webdataset if not available in info file.",
)
parser.add_argument(
"--val-num-samples",
type=int,
default=None,
help="Number of samples in dataset. Useful for webdataset if not available in info file.",
)
parser.add_argument(
"--dataset-type",
choices=["webdataset", "csv", "auto", "toy"],
default="auto",
help="Which type of dataset to process.",
)
parser.add_argument(
"--csv-separator",
type=str,
default="\t",
help="For csv-like datasets, which separator to use.",
)
parser.add_argument(
"--csv-img-key",
type=str,
default="filepath",
help="For csv-like datasets, the name of the key for the image paths.",
)
parser.add_argument(
"--csv-caption-key",
type=str,
default="title",
help="For csv-like datasets, the name of the key for the captions.",
)
parser.add_argument(
"--imagenet-val",
type=str,
default=None,
help="Path to imagenet val set for conducting zero shot evaluation.",
)
parser.add_argument(
"--imagenet-v2",
type=str,
default=None,
help="Path to imagenet v2 for conducting zero shot evaluation.",
)
parser.add_argument(
"--datasetnames",
nargs="+",
default=None,
help="If loading webdataset, spedify the dataset names to load. Can be some of these: Clotho, audioset, audiocaps, BBCSoundEffects",
)
parser.add_argument(
"--full-train-dataset",
nargs="+",
default=None,
help="Which dataset will be trained with all the subsets. (train+test)",
)
parser.add_argument(
"--exclude-eval-dataset",
nargs="+",
default=None,
help="Which dataset will be excluded with evaluation",
)
parser.add_argument(
"--datasetinfos",
nargs="+",
default=None,
help="If loading webdataset, spedify the dataset types to load. Can be some of these: train, test, valid, unbalanced_train, balanced_train, eval",
)
parser.add_argument(
"--dataset-proportion",
type=float,
default=1.0,
help="How much proportion of dataset we want to train.",
)
parser.add_argument(
"--remotedata",
default=False,
action="store_true",
help="if the dataset is remote, set this flag",
)
parser.add_argument(
"--class-label-path",
type=str,
default=None,
help="The path of the class label pickle or csv.",
)
parser.add_argument(
"--datasetpath",
type=str,
default="/mnt/audio_clip/webdataset_tar",
help="The path to the dataset",
)
parser.add_argument(
"--logs",
type=str,
default="./logs/",
help="Where to store tensorboard logs. Use None to avoid storing logs.",
)
parser.add_argument(
"--log-local",
action="store_true",
default=False,
help="log files on local master, otherwise global master only.",
)
parser.add_argument(
"--name",
type=str,
default=None,
help="Optional identifier for the experiment when storing logs. Otherwise use current time.",
)
parser.add_argument(
"--workers", type=int, default=1, help="Number of workers per GPU."
)
parser.add_argument(
"--batch-size", type=int, default=64, help="Batch size per GPU."
)
parser.add_argument(
"--epochs", type=int, default=32, help="Number of epochs to train for."
)
parser.add_argument("--lr", type=float, default=None, help="Learning rate.")
parser.add_argument("--beta1", type=float, default=None, help="Adam beta 1.")
parser.add_argument("--beta2", type=float, default=None, help="Adam beta 2.")
parser.add_argument("--eps", type=float, default=None, help="Adam epsilon.")
parser.add_argument("--momentum", type=float, default=None, help="SGD epsilon.")
parser.add_argument("--wd", type=float, default=0.2, help="Weight decay.")
parser.add_argument(
"--split-opt",
action="store_true",
default=False,
help="Use this flag to skip the learning rate decay.",
)
parser.add_argument(
"--lr-pretrained", type=float, default=None, help="Learning rate for text."
)
parser.add_argument(
"--beta1-pretrained", type=float, default=None, help="Adam beta 1 for text."
)
parser.add_argument(
"--beta2-pretrained", type=float, default=None, help="Adam beta 2 for text."
)
parser.add_argument(
"--eps-pretrained", type=float, default=None, help="Adam epsilon for text."
)
parser.add_argument(
"--wd-pretrained", type=float, default=0.2, help="Weight decay for text."
)
parser.add_argument(
"--momentum-pretrained", type=float, default=0.9, help="Momentum for text."
)
parser.add_argument(
"--lr-new", type=float, default=None, help="Learning rate for audio."
)
parser.add_argument(
"--beta1-new", type=float, default=None, help="Adam beta 1 for audio."
)
parser.add_argument(
"--beta2-new", type=float, default=None, help="Adam beta 2 for audio."
)
parser.add_argument(
"--eps-new", type=float, default=None, help="Adam epsilon for audio."
)
parser.add_argument(
"--wd-new", type=float, default=0.2, help="Weight decay for audio."
)
parser.add_argument(
"--momentum-new", type=float, default=0.9, help="Momentum for audio."
)
parser.add_argument(
"--warmup", type=int, default=10000, help="Number of steps to warmup for."
)
parser.add_argument(
"--use-bn-sync",
default=False,
action="store_true",
help="Whether to use batch norm sync.",
)
parser.add_argument(
"--skip-scheduler",
action="store_true",
default=False,
help="Use this flag to skip the learning rate decay.",
)
parser.add_argument(
"--save-frequency", type=int, default=1, help="How often to save checkpoints."
)
parser.add_argument(
"--save-top-performance",
type=int,
default=0,
help="Save the top x performance weights if the value >0",
)
parser.add_argument(
"--save-most-recent",
action="store_true",
default=False,
help="Always save the most recent model trained to epoch_latest.pt.",
)
parser.add_argument(
"--zeroshot-frequency", type=int, default=2, help="How often to run zero shot."
)
parser.add_argument(
"--val-frequency",
type=int,
default=1,
help="How often to run evaluation with val data.",
)
parser.add_argument(
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: none)",
)
parser.add_argument(
"--precision",
choices=["amp", "fp16", "fp32"],
default="amp",
help="Floating point precision.",
)
parser.add_argument(
"--amodel",
type=str,
default="RN50",
help="Name of the audio backbone to use.",
)
parser.add_argument(
"--tmodel",
type=str,
default="transformer",
help="Name of the text backbone to use. Can be [transformer, bert, roberta, bart]",
)
parser.add_argument(
"--pretrained-audio",
default="",
type=str,
help="Use a pretrained audio model weights for the audio encoder of CLAP",
)
parser.add_argument(
"--pretrained-text",
default="",
type=str,
help="Use a pretrained text model weights for the text encoder of CLAP",
)
parser.add_argument(
"--pretrained",
default="",
type=str,
help="Use a pretrained CLIP model weights with the specified tag or file path.",
)
parser.add_argument(
"--pretrained-image",
default=False,
action="store_true",
help="Load imagenet pretrained weights for image tower backbone if available.",
)
parser.add_argument(
"--lock-image",
default=False,
action="store_true",
help="Lock full image tower by disabling gradients.",
)
parser.add_argument(
"--lock-image-unlocked-groups",
type=int,
default=0,
help="Leave last n image tower layer groups unlocked.",
)
parser.add_argument(
"--lock-image-freeze-bn-stats",
default=False,
action="store_true",
help="Freeze BatchNorm running stats in image tower for any locked layers.",
)
parser.add_argument(
"--local-loss",
default=False,
action="store_true",
help="calculate loss w/ local features @ global (instead of realizing full global @ global matrix)",
)
parser.add_argument(
"--gather-with-grad",
default=False,
action="store_true",
help="enable full distributed gradient for feature gather",
)
parser.add_argument(
"--force-quick-gelu",
default=False,
action="store_true",
help="Force use of QuickGELU activation for non-OpenAI transformer models.",
)
parser.add_argument(
"--torchscript",
default=False,
action="store_true",
help="torch.jit.script the model, also uses jit version of OpenAI models if pretrained=='openai'",
)
parser.add_argument(
"--trace",
default=False,
action="store_true",
help="torch.jit.trace the model for inference / eval only",
)
# arguments for distributed training
parser.add_argument(
"--dist-url",
default="env://",
type=str,
help="url used to set up distributed training",
)
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument(
"--report-to",
default="",
type=str,
help="Options are ['wandb', 'tensorboard', 'wandb,tensorboard']",
)
parser.add_argument(
"--wandb-notes", default="", type=str, help="Notes if logging with wandb"
)
parser.add_argument(
"--C", type=float, default=3.16, help="inverse regularizer for logistic reg."
)
parser.add_argument(
"--debug",
default=False,
action="store_true",
help="If true, more information is logged.",
)
parser.add_argument(
"--copy-codebase",
default=False,
action="store_true",
help="If true, we copy the entire base on the log diretory, and execute from there.",
)
parser.add_argument(
"--horovod",
default=False,
action="store_true",
help="Use horovod for distributed training.",
)
parser.add_argument(
"--ddp-static-graph",
default=False,
action="store_true",
help="Enable static graph optimization for DDP in PyTorch >= 1.11.",
)
parser.add_argument(
"--no-set-device-rank",
default=False,
action="store_true",
help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc).",
)
parser.add_argument("--seed", type=int, default=4242, help="Default random seed.")
parser.add_argument(
"--top-k-checkpoint-select-dataset",
type=str,
default="all",
help="The dataset of selecting top-k checkpoint.",
)
# @R10, @R@5, @R1, mAP@10
parser.add_argument(
"--top-k-checkpoint-select-metric",
type=str,
default="_R@10",
help="The metric for selecting top-k checkpoint.",
)
parser.add_argument(
"--openai-model-cache-dir",
type=str,
default=f"{CACHE_DIR}/clip",
help="Directory to download OpenAI models.",
)
parser.add_argument(
"--optimizer",
type=str,
default="adamw",
help="can be AdamW or SGD",
)
parser.add_argument(
"--parallel-eval",
default=False,
action="store_true",
help="Eval in parallel (multi-GPU, multi-node).",
)
parser.add_argument(
"--no-eval",
default=False,
action="store_true",
help="Training without evaluation.",
)
parser.add_argument(
"--lp-mlp",
default=False,
action="store_true",
help="Linear Probe using MLP layer or not.",
)
parser.add_argument(
"--lp-freeze",
default=False,
action="store_true",
help="Linear Probe using Freeze CLAP or not",
)
parser.add_argument(
"--lp-act",
default="None",
type=str,
help="Options are ['relu','elu','prelu','softmax','sigmoid']",
)
parser.add_argument(
"--lp-loss", type=str, default="bce", help="Loss func of Linear Probe."
)
parser.add_argument(
"--lp-metrics",
type=str,
default="map,mauc,acc",
help="Metrics of Linear Probe.",
)
parser.add_argument(
"--lp-lr", type=float, default=1e-4, help="learning rate of linear probe"
)
parser.add_argument(
"--kappa",
type=float,
default=0,
help="the kappa in the weighted contrastive loss, default is to turn off the weighted contrastive loss",
)
parser.add_argument(
"--data-filling",
type=str,
default="pad",
help="type of data filling when the audio length is shorter than the max length."
"Can be one of the following: repeat, repeatpad, pad",
)
parser.add_argument(
"--data-truncating",
type=str,
default="rand_trunc",
help="type of data truncation when the audio length is longer than the max length."
"Can be one of the following: rand_trunc, fusion",
)
parser.add_argument(
"--clap-mlploss",
default=False,
action="store_true",
help="Using MLP loss for CLAP model or not",
)
parser.add_argument(
"--wandb-id",
type=str,
default=None,
help="the id of wandb experiment to restore.",
)
parser.add_argument(
"--sleep", type=float, default=0, help="sleep n seconds before start training"
)
# variable length processing
parser.add_argument(
"--enable-fusion",
default=False,
action="store_true",
help="Enable feature funsion for variable-length data",
)
parser.add_argument(
"--fusion-type",
type=str,
default="None",
help="Type is among ['channel_map', 'daf_1d','aff_1d','iaff_1d','daf_2d','aff_2d','iaff_2d']",
)
parser.add_argument(
"--mixup",
default=False,
action="store_true",
help="Enable mixup in finetuning training.",
)
parser.add_argument(
"--text-augment-selection",
type=str,
default=None,
help="For selecting levels of augmented text. Type is among ['all', 'augment_only', 'none']",
)
args = parser.parse_args()
# If some params are not passed, we use the default values based on model name.
default_params = get_default_params(args.amodel)
for name, val in default_params.items():
if getattr(args, name) is None:
setattr(args, name, val)
return args
|