File size: 33,025 Bytes
f1069cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
import yaml
import random
import inspect
import numpy as np
from tqdm import tqdm

import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import repeat
from tools.torch_tools import wav_to_fbank

from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from audioldm.utils import default_audioldm_config, get_metadata

from transformers import CLIPTokenizer, AutoTokenizer, AutoProcessor
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, ClapAudioModel, ClapTextModel

import sys
sys.path.insert(0, "diffusers/src")

import diffusers
from diffusers.utils import randn_tensor
from diffusers import DDPMScheduler, UNet2DConditionModel, UNet2DConditionModelMusic
from diffusers import AutoencoderKL as DiffuserAutoencoderKL
from layers.layers import chord_tokenizer, beat_tokenizer, Chord_Embedding, Beat_Embedding, Music_PositionalEncoding, Fundamental_Music_Embedding

def build_pretrained_models(name):
	checkpoint = torch.load(get_metadata()[name]["path"], map_location="cpu")
	scale_factor = checkpoint["state_dict"]["scale_factor"].item()

	vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k}

	config = default_audioldm_config(name)
	vae_config = config["model"]["params"]["first_stage_config"]["params"]
	vae_config["scale_factor"] = scale_factor

	vae = AutoencoderKL(**vae_config)
	vae.load_state_dict(vae_state_dict)

	fn_STFT = TacotronSTFT(
		config["preprocessing"]["stft"]["filter_length"],
		config["preprocessing"]["stft"]["hop_length"],
		config["preprocessing"]["stft"]["win_length"],
		config["preprocessing"]["mel"]["n_mel_channels"],
		config["preprocessing"]["audio"]["sampling_rate"],
		config["preprocessing"]["mel"]["mel_fmin"],
		config["preprocessing"]["mel"]["mel_fmax"],
	)

	vae.eval()
	fn_STFT.eval()
	return vae, fn_STFT


class AudioDiffusion(nn.Module):
	def __init__(
		self,
		text_encoder_name,
		scheduler_name,
		unet_model_name=None,
		unet_model_config_path=None,
		snr_gamma=None,
		freeze_text_encoder=True,
		uncondition=False,

	):
		super().__init__()

		assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"

		self.text_encoder_name = text_encoder_name
		self.scheduler_name = scheduler_name
		self.unet_model_name = unet_model_name
		self.unet_model_config_path = unet_model_config_path
		self.snr_gamma = snr_gamma
		self.freeze_text_encoder = freeze_text_encoder
		self.uncondition = uncondition

		# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
		self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
		self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")

		if unet_model_config_path:
			unet_config = UNet2DConditionModel.load_config(unet_model_config_path)
			self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet")
			self.set_from = "random"
			print("UNet initialized randomly.")
		else:
			self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
			self.set_from = "pre-trained"
			self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
			self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
			print("UNet initialized from stable diffusion checkpoint.")

		if "stable-diffusion" in self.text_encoder_name:
			self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer")
			self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder")
		elif "t5" in self.text_encoder_name:
			self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
			self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
		else:
			self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
			self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name)

	def compute_snr(self, timesteps):
		"""
		Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
		"""
		alphas_cumprod = self.noise_scheduler.alphas_cumprod
		sqrt_alphas_cumprod = alphas_cumprod**0.5
		sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

		# Expand the tensors.
		# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
		sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
		while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
			sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
		alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

		sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
		while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
			sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
		sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

		# Compute SNR.
		snr = (alpha / sigma) ** 2
		return snr

	def encode_text(self, prompt):
		device = self.text_encoder.device
		batch = self.tokenizer(
			prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
		)
		input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)

		if self.freeze_text_encoder:
			with torch.no_grad():
				encoder_hidden_states = self.text_encoder(
					input_ids=input_ids, attention_mask=attention_mask
				)[0]
		else:
			encoder_hidden_states = self.text_encoder(
				input_ids=input_ids, attention_mask=attention_mask
			)[0]

		boolean_encoder_mask = (attention_mask == 1).to(device)
		return encoder_hidden_states, boolean_encoder_mask

	def forward(self, latents, prompt, validation_mode=False):
		device = self.text_encoder.device
		num_train_timesteps = self.noise_scheduler.num_train_timesteps
		self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)

		encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)

		if self.uncondition:
			mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
			if len(mask_indices) > 0:
				encoder_hidden_states[mask_indices] = 0

		bsz = latents.shape[0]

		if validation_mode:
			timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
		else:
			# Sample a random timestep for each instance
			timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
			# print('in if ', timesteps)
		timesteps = timesteps.long()
		# print('outside if ' , timesteps)
		noise = torch.randn_like(latents)
		noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)

		# Get the target for loss depending on the prediction type
		if self.noise_scheduler.config.prediction_type == "epsilon":
			target = noise
		elif self.noise_scheduler.config.prediction_type == "v_prediction":
			target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
		else:
			raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")

		if self.set_from == "random":
			model_pred = self.unet(
				noisy_latents, timesteps, encoder_hidden_states, 
				encoder_attention_mask=boolean_encoder_mask
			).sample

		elif self.set_from == "pre-trained":
			compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
			model_pred = self.unet(
				compressed_latents, timesteps, encoder_hidden_states, 
				encoder_attention_mask=boolean_encoder_mask
			).sample
			model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()

		if self.snr_gamma is None:
			loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
		else:
			# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
			# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
			snr = self.compute_snr(timesteps)
			mse_loss_weights = (
				torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
			)
			loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
			loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
			loss = loss.mean()

		return loss

	@torch.no_grad()
	def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, 
					disable_progress=True):
		device = self.text_encoder.device
		classifier_free_guidance = guidance_scale > 1.0
		batch_size = len(prompt) * num_samples_per_prompt

		if classifier_free_guidance:
			prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt)
		else:
			prompt_embeds, boolean_prompt_mask = self.encode_text(prompt)
			prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
			boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)

		inference_scheduler.set_timesteps(num_steps, device=device)
		timesteps = inference_scheduler.timesteps

		num_channels_latents = self.unet.in_channels
		latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)

		num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
		progress_bar = tqdm(range(num_steps), disable=disable_progress)

		for i, t in enumerate(timesteps):
			# expand the latents if we are doing classifier free guidance
			latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
			latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)

			noise_pred = self.unet(
				latent_model_input, t, encoder_hidden_states=prompt_embeds,
				encoder_attention_mask=boolean_prompt_mask
			).sample

			# perform guidance
			if classifier_free_guidance:
				noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
				noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

			# compute the previous noisy sample x_t -> x_t-1
			latents = inference_scheduler.step(noise_pred, t, latents).prev_sample

			# call the callback, if provided
			if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
				progress_bar.update(1)

		if self.set_from == "pre-trained":
			latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
		return latents

	def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
		shape = (batch_size, num_channels_latents, 256, 16)
		latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
		# scale the initial noise by the standard deviation required by the scheduler
		latents = latents * inference_scheduler.init_noise_sigma
		return latents

	def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
		device = self.text_encoder.device
		batch = self.tokenizer(
			prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
		)
		input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)

		with torch.no_grad():
			prompt_embeds = self.text_encoder(
				input_ids=input_ids, attention_mask=attention_mask
			)[0]
				
		prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
		attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)

		# get unconditional embeddings for classifier free guidance
		uncond_tokens = [""] * len(prompt)

		max_length = prompt_embeds.shape[1]
		uncond_batch = self.tokenizer(
			uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
		)
		uncond_input_ids = uncond_batch.input_ids.to(device)
		uncond_attention_mask = uncond_batch.attention_mask.to(device)

		with torch.no_grad():
			negative_prompt_embeds = self.text_encoder(
				input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
			)[0]
				
		negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
		uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)

		# For classifier free guidance, we need to do two forward passes.
		# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
		prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
		prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
		boolean_prompt_mask = (prompt_mask == 1).to(device)

		return prompt_embeds, boolean_prompt_mask
	

class MusicAudioDiffusion(nn.Module):
	def __init__(
		self,
		text_encoder_name,
		scheduler_name,
		unet_model_name=None,
		unet_model_config_path=None,
		snr_gamma=None,
		freeze_text_encoder=True,
		uncondition=False,

		d_fme = 1024,  #FME
		fme_type = "se", 
		base = 1, 
		if_trainable = True, 
		translation_bias_type = "nd",
		emb_nn = True,
		d_pe = 1024, #PE
		if_index = True, 
		if_global_timing = True,
		if_modulo_timing = False,
		d_beat = 1024, #Beat
		d_oh_beat_type = 7, 
		beat_len = 50,
		d_chord = 1024, #Chord
		d_oh_chord_type = 12,
		d_oh_inv_type = 4,
		chord_len = 20,

	):
		super().__init__()

		assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"

		self.text_encoder_name = text_encoder_name
		self.scheduler_name = scheduler_name
		self.unet_model_name = unet_model_name
		self.unet_model_config_path = unet_model_config_path
		self.snr_gamma = snr_gamma
		self.freeze_text_encoder = freeze_text_encoder
		self.uncondition = uncondition

		# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
		self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
		self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")

		if unet_model_config_path:
			unet_config = UNet2DConditionModelMusic.load_config(unet_model_config_path)
			self.unet = UNet2DConditionModelMusic.from_config(unet_config, subfolder="unet")
			self.set_from = "random"
			print("UNet initialized randomly.")
		else:
			self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
			self.set_from = "pre-trained"
			self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
			self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
			print("UNet initialized from stable diffusion checkpoint.")

		if "stable-diffusion" in self.text_encoder_name:
			self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer")
			self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder")
		elif "t5" in self.text_encoder_name:
			self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
			self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
		else:
			self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
			self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name)

		self.device = self.text_encoder.device
		#Music Feature Encoder
		self.FME = Fundamental_Music_Embedding(d_model = d_fme, base= base, if_trainable = False, type = fme_type,emb_nn=emb_nn,translation_bias_type = translation_bias_type)
		self.PE = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device)
		# self.PE2 = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device)
		self.beat_tokenizer = beat_tokenizer(seq_len_beat=beat_len, if_pad = True)
		self.beat_embedding_layer = Beat_Embedding(self.PE, d_model = d_beat, d_oh_beat_type = d_oh_beat_type)
		self.chord_embedding_layer = Chord_Embedding(self.FME, self.PE, d_model = d_chord, d_oh_type = d_oh_chord_type, d_oh_inv = d_oh_inv_type)
		self.chord_tokenizer = chord_tokenizer(seq_len_chord=chord_len, if_pad = True)


	def compute_snr(self, timesteps):
		"""
		Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
		"""
		alphas_cumprod = self.noise_scheduler.alphas_cumprod
		sqrt_alphas_cumprod = alphas_cumprod**0.5
		sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

		# Expand the tensors.
		# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
		sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
		while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
			sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
		alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

		sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
		while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
			sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
		sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

		# Compute SNR.
		snr = (alpha / sigma) ** 2
		return snr

	def encode_text(self, prompt):
		device = self.text_encoder.device
		batch = self.tokenizer(
			prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
		)
		input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) #cuda
		if self.freeze_text_encoder:
			with torch.no_grad():
				encoder_hidden_states = self.text_encoder(
					input_ids=input_ids, attention_mask=attention_mask
				)[0] #batch, len_text, dim
		else:
			encoder_hidden_states = self.text_encoder(
				input_ids=input_ids, attention_mask=attention_mask
			)[0]
		boolean_encoder_mask = (attention_mask == 1).to(device) ##batch, len_text
		return encoder_hidden_states, boolean_encoder_mask

	def encode_beats(self, beats): 
		# device = self.beat_embedding_layer.device
		out_beat = []
		out_beat_timing = []
		out_mask = []
		for beat in beats:
			tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
			out_beat.append(tokenized_beats)
			out_beat_timing.append(tokenized_beats_timing)
			out_mask.append(tokenized_beat_mask)
		out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).cuda(), torch.tensor(out_beat_timing).cuda(), torch.tensor(out_mask).cuda() #batch, len_beat
		embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing)

		return embedded_beat, out_mask

	def encode_chords(self, chords,chords_time):
		out_chord_root = []
		out_chord_type = []
		out_chord_inv = []
		out_chord_timing = []
		out_mask = []
		for chord, chord_time in zip(chords,chords_time): #batch loop
			tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
			out_chord_root.append(tokenized_chord_root)
			out_chord_type.append(tokenized_chord_type)
			out_chord_inv.append(tokenized_chord_inv)
			out_chord_timing.append(tokenized_chord_time)
			out_mask.append(tokenized_chord_mask)
		#chords: (B, LEN, 4)
		out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).cuda(), torch.tensor(out_chord_type).cuda(), torch.tensor(out_chord_inv).cuda(), torch.tensor(out_chord_timing).cuda(), torch.tensor(out_mask).cuda()
		embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing)
		return embedded_chord, out_mask
		# return out_chord_root, out_mask


	def forward(self, latents, prompt, beats, chords,chords_time, validation_mode=False):
		device = self.text_encoder.device
		num_train_timesteps = self.noise_scheduler.num_train_timesteps
		self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)

		encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
		
		# with torch.no_grad():
		encoded_beats, beat_mask = self.encode_beats(beats) #batch, len_beats, dim; batch, len_beats
		encoded_chords, chord_mask = self.encode_chords(chords,chords_time)


		if self.uncondition:
			mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
			if len(mask_indices) > 0:
				encoder_hidden_states[mask_indices] = 0
				encoded_chords[mask_indices] = 0
				encoded_beats[mask_indices] = 0

		bsz = latents.shape[0]

		if validation_mode:
			timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
		else:
			timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
		
		
		timesteps = timesteps.long()

		noise = torch.randn_like(latents)
		noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)

		# Get the target for loss depending on the prediction type
		if self.noise_scheduler.config.prediction_type == "epsilon":
			target = noise
		elif self.noise_scheduler.config.prediction_type == "v_prediction":
			target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
		else:
			raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")

		if self.set_from == "random":
			# model_pred = torch.zeros((bsz,8,256,16)).to(device)
			model_pred = self.unet(
				noisy_latents, timesteps, encoder_hidden_states, encoded_beats, encoded_chords,
				encoder_attention_mask=boolean_encoder_mask, beat_attention_mask = beat_mask, chord_attention_mask = chord_mask
			).sample

		elif self.set_from == "pre-trained":
			compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
			model_pred = self.unet(
				compressed_latents, timesteps, encoder_hidden_states, 
				encoder_attention_mask=boolean_encoder_mask
			).sample
			model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()

		if self.snr_gamma is None:
			loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
		else:
			# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
			# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
			snr = self.compute_snr(timesteps)
			mse_loss_weights = (
				torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
			)
			loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
			loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
			loss = loss.mean()

		return loss

	@torch.no_grad()
	def inference(self, prompt, beats, chords,chords_time, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, 
				  disable_progress=True):
		device = self.text_encoder.device
		classifier_free_guidance = guidance_scale > 1.0
		batch_size = len(prompt) * num_samples_per_prompt

		if classifier_free_guidance:
			prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt)
			encoded_beats, beat_mask = self.encode_beats_classifier_free(beats, num_samples_per_prompt) #batch, len_beats, dim; batch, len_beats
			encoded_chords, chord_mask = self.encode_chords_classifier_free(chords, chords_time, num_samples_per_prompt)
		else:
			prompt_embeds, boolean_prompt_mask = self.encode_text(prompt)
			prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
			boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)

			encoded_beats, beat_mask = self.encode_beats(beats) #batch, len_beats, dim; batch, len_beats
			encoded_beats = encoded_beats.repeat_interleave(num_samples_per_prompt, 0)
			beat_mask = beat_mask.repeat_interleave(num_samples_per_prompt, 0)

			encoded_chords, chord_mask = self.encode_chords(chords,chords_time)
			encoded_chords = encoded_chords.repeat_interleave(num_samples_per_prompt, 0)
			chord_mask = chord_mask.repeat_interleave(num_samples_per_prompt, 0)

		# print(f"encoded_chords:{encoded_chords.shape}, chord_mask:{chord_mask.shape}, prompt_embeds:{prompt_embeds.shape},boolean_prompt_mask:{boolean_prompt_mask.shape} ")
		inference_scheduler.set_timesteps(num_steps, device=device)
		timesteps = inference_scheduler.timesteps

		num_channels_latents = self.unet.in_channels
		latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)

		num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
		progress_bar = tqdm(range(num_steps), disable=disable_progress)

		for i, t in enumerate(timesteps):
			# expand the latents if we are doing classifier free guidance
			latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
			latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)

			noise_pred = self.unet(
				latent_model_input, t, encoder_hidden_states=prompt_embeds,
				encoder_attention_mask=boolean_prompt_mask, 
				beat_features = encoded_beats, beat_attention_mask = beat_mask, chord_features = encoded_chords,chord_attention_mask = chord_mask
			).sample

			# perform guidance
			if classifier_free_guidance: #should work for beats and chords too
				noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
				noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

			# compute the previous noisy sample x_t -> x_t-1
			latents = inference_scheduler.step(noise_pred, t, latents).prev_sample

			# call the callback, if provided
			if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
				progress_bar.update(1)

		if self.set_from == "pre-trained":
			latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
		return latents

	def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
		shape = (batch_size, num_channels_latents, 256, 16)
		latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
		# scale the initial noise by the standard deviation required by the scheduler
		latents = latents * inference_scheduler.init_noise_sigma
		return latents

	def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
		device = self.text_encoder.device
		batch = self.tokenizer(
			prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
		)
		input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)

		with torch.no_grad():
			prompt_embeds = self.text_encoder(
				input_ids=input_ids, attention_mask=attention_mask
			)[0]
				
		prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
		attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)

		# get unconditional embeddings for classifier free guidance
		# print(len(prompt), 'this is prompt len')
		uncond_tokens = [""] * len(prompt)

		max_length = prompt_embeds.shape[1]
		uncond_batch = self.tokenizer(
			uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
		)
		uncond_input_ids = uncond_batch.input_ids.to(device)
		uncond_attention_mask = uncond_batch.attention_mask.to(device)

		with torch.no_grad():
			negative_prompt_embeds = self.text_encoder(
				input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
			)[0]
				
		negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
		uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)

		# For classifier free guidance, we need to do two forward passes.
		# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
		prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
		prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
		boolean_prompt_mask = (prompt_mask == 1).to(device)

		return prompt_embeds, boolean_prompt_mask
	

	def encode_beats_classifier_free(self, beats, num_samples_per_prompt):
		with torch.no_grad():
			out_beat = []
			out_beat_timing = []
			out_mask = []
			for beat in beats:
				tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
				out_beat.append(tokenized_beats)
				out_beat_timing.append(tokenized_beats_timing)
				out_mask.append(tokenized_beat_mask)
			out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).cuda(), torch.tensor(out_beat_timing).cuda(), torch.tensor(out_mask).cuda() #batch, len_beat
			embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing)	
			
		embedded_beat = embedded_beat.repeat_interleave(num_samples_per_prompt, 0)
		out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0)

		uncond_beats = [[[],[]]] * len(beats)

		max_length = embedded_beat.shape[1]
		with torch.no_grad():
			out_beat_unc = []
			out_beat_timing_unc = []
			out_mask_unc = []
			for beat in uncond_beats:
				tokenized_beats, tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
				out_beat_unc.append(tokenized_beats)
				out_beat_timing_unc.append(tokenized_beats_timing)
				out_mask_unc.append(tokenized_beat_mask)
			out_beat_unc, out_beat_timing_unc, out_mask_unc = torch.tensor(out_beat_unc).cuda(), torch.tensor(out_beat_timing_unc).cuda(), torch.tensor(out_mask_unc).cuda() #batch, len_beat
			embedded_beat_unc = self.beat_embedding_layer(out_beat_unc, out_beat_timing_unc)

		embedded_beat_unc = embedded_beat_unc.repeat_interleave(num_samples_per_prompt, 0)
		out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0)

		embedded_beat = torch.cat([embedded_beat_unc, embedded_beat])
		out_mask = torch.cat([out_mask_unc, out_mask])

		return embedded_beat, out_mask


	def encode_chords_classifier_free(self, chords, chords_time, num_samples_per_prompt):

		with torch.no_grad():
			out_chord_root = []
			out_chord_type = []
			out_chord_inv = []
			out_chord_timing = []
			out_mask = []
			for chord, chord_time in zip(chords,chords_time): #batch loop
				tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
				out_chord_root.append(tokenized_chord_root)
				out_chord_type.append(tokenized_chord_type)
				out_chord_inv.append(tokenized_chord_inv)
				out_chord_timing.append(tokenized_chord_time)
				out_mask.append(tokenized_chord_mask)	
			out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).cuda(), torch.tensor(out_chord_type).cuda(), torch.tensor(out_chord_inv).cuda(), torch.tensor(out_chord_timing).cuda(), torch.tensor(out_mask).cuda()
			embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing)
		
		embedded_chord = embedded_chord.repeat_interleave(num_samples_per_prompt, 0)
		out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0)

		chords_unc=[[]] * len(chords)
		chords_time_unc=[[]] * len(chords_time)

		max_length = embedded_chord.shape[1]

		with torch.no_grad():
			out_chord_root_unc = []
			out_chord_type_unc = []
			out_chord_inv_unc = []
			out_chord_timing_unc = []
			out_mask_unc = []
			for chord, chord_time in zip(chords_unc,chords_time_unc): #batch loop
				tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
				out_chord_root_unc.append(tokenized_chord_root)
				out_chord_type_unc.append(tokenized_chord_type)
				out_chord_inv_unc.append(tokenized_chord_inv)
				out_chord_timing_unc.append(tokenized_chord_time)
				out_mask_unc.append(tokenized_chord_mask)	
			out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc, out_mask_unc = torch.tensor(out_chord_root_unc).cuda(), torch.tensor(out_chord_type_unc).cuda(), torch.tensor(out_chord_inv_unc).cuda(), torch.tensor(out_chord_timing_unc).cuda(), torch.tensor(out_mask_unc).cuda()
			embedded_chord_unc = self.chord_embedding_layer(out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc)
		

		embedded_chord_unc = embedded_chord_unc.repeat_interleave(num_samples_per_prompt, 0)
		out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0)

		embedded_chord = torch.cat([embedded_chord_unc, embedded_chord])
		out_mask = torch.cat([out_mask_unc, out_mask])

		return embedded_chord, out_mask