Spaces:
Running
on
L4
Running
on
L4
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Conversion script for the AudioLDM checkpoints.""" | |
import argparse | |
import re | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
ClapTextConfig, | |
ClapTextModelWithProjection, | |
SpeechT5HifiGan, | |
SpeechT5HifiGanConfig, | |
) | |
from diffusers import ( | |
AudioLDMPipeline, | |
AutoencoderKL, | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
HeunDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils import is_omegaconf_available, is_safetensors_available | |
from diffusers.utils.import_utils import BACKENDS_MAPPING | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments | |
def shave_segments(path, n_shave_prefix_segments=1): | |
""" | |
Removes segments. Positive values shave the first segments, negative shave the last segments. | |
""" | |
if n_shave_prefix_segments >= 0: | |
return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
else: | |
return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_resnet_paths | |
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item.replace("in_layers.0", "norm1") | |
new_item = new_item.replace("in_layers.2", "conv1") | |
new_item = new_item.replace("out_layers.0", "norm2") | |
new_item = new_item.replace("out_layers.3", "conv2") | |
new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
new_item = new_item.replace("skip_connection", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths | |
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_attention_paths | |
def renew_attention_paths(old_list): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
# new_item = new_item.replace('norm.weight', 'group_norm.weight') | |
# new_item = new_item.replace('norm.bias', 'group_norm.bias') | |
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') | |
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') | |
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_attention_paths | |
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("norm.weight", "group_norm.weight") | |
new_item = new_item.replace("norm.bias", "group_norm.bias") | |
new_item = new_item.replace("q.weight", "query.weight") | |
new_item = new_item.replace("q.bias", "query.bias") | |
new_item = new_item.replace("k.weight", "key.weight") | |
new_item = new_item.replace("k.bias", "key.bias") | |
new_item = new_item.replace("v.weight", "value.weight") | |
new_item = new_item.replace("v.bias", "value.bias") | |
new_item = new_item.replace("proj_out.weight", "proj_attn.weight") | |
new_item = new_item.replace("proj_out.bias", "proj_attn.bias") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.assign_to_checkpoint | |
def assign_to_checkpoint( | |
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None | |
): | |
""" | |
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits | |
attention layers, and takes into account additional replacements that may arise. | |
Assigns the weights to the new checkpoint. | |
""" | |
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
# Splits the attention layers into three variables. | |
if attention_paths_to_split is not None: | |
for path, path_map in attention_paths_to_split.items(): | |
old_tensor = old_checkpoint[path] | |
channels = old_tensor.shape[0] // 3 | |
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
checkpoint[path_map["query"]] = query.reshape(target_shape) | |
checkpoint[path_map["key"]] = key.reshape(target_shape) | |
checkpoint[path_map["value"]] = value.reshape(target_shape) | |
for path in paths: | |
new_path = path["new"] | |
# These have already been assigned | |
if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
continue | |
# Global renaming happens here | |
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
if additional_replacements is not None: | |
for replacement in additional_replacements: | |
new_path = new_path.replace(replacement["old"], replacement["new"]) | |
# proj_attn.weight has to be converted from conv 1D to linear | |
if "proj_attn.weight" in new_path: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
else: | |
checkpoint[new_path] = old_checkpoint[path["old"]] | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear | |
def conv_attn_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
attn_keys = ["query.weight", "key.weight", "value.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in attn_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
elif "proj_attn.weight" in key: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0] | |
def create_unet_diffusers_config(original_config, image_size: int): | |
""" | |
Creates a UNet config for diffusers based on the config of the original AudioLDM model. | |
""" | |
unet_params = original_config.model.params.unet_config.params | |
vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] | |
down_block_types = [] | |
resolution = 1 | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D" | |
down_block_types.append(block_type) | |
if i != len(block_out_channels) - 1: | |
resolution *= 2 | |
up_block_types = [] | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D" | |
up_block_types.append(block_type) | |
resolution //= 2 | |
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1) | |
cross_attention_dim = ( | |
unet_params.cross_attention_dim if "cross_attention_dim" in unet_params else block_out_channels | |
) | |
class_embed_type = "simple_projection" if "extra_film_condition_dim" in unet_params else None | |
projection_class_embeddings_input_dim = ( | |
unet_params.extra_film_condition_dim if "extra_film_condition_dim" in unet_params else None | |
) | |
class_embeddings_concat = unet_params.extra_film_use_concat if "extra_film_use_concat" in unet_params else None | |
config = { | |
"sample_size": image_size // vae_scale_factor, | |
"in_channels": unet_params.in_channels, | |
"out_channels": unet_params.out_channels, | |
"down_block_types": tuple(down_block_types), | |
"up_block_types": tuple(up_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"layers_per_block": unet_params.num_res_blocks, | |
"cross_attention_dim": cross_attention_dim, | |
"class_embed_type": class_embed_type, | |
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, | |
"class_embeddings_concat": class_embeddings_concat, | |
} | |
return config | |
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_vae_diffusers_config | |
def create_vae_diffusers_config(original_config, checkpoint, image_size: int): | |
""" | |
Creates a VAE config for diffusers based on the config of the original AudioLDM model. Compared to the original | |
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE. | |
""" | |
vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
_ = original_config.model.params.first_stage_config.params.embed_dim | |
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] | |
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config.model.params else 0.18215 | |
config = { | |
"sample_size": image_size, | |
"in_channels": vae_params.in_channels, | |
"out_channels": vae_params.out_ch, | |
"down_block_types": tuple(down_block_types), | |
"up_block_types": tuple(up_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"latent_channels": vae_params.z_channels, | |
"layers_per_block": vae_params.num_res_blocks, | |
"scaling_factor": float(scaling_factor), | |
} | |
return config | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular | |
def create_diffusers_schedular(original_config): | |
schedular = DDIMScheduler( | |
num_train_timesteps=original_config.model.params.timesteps, | |
beta_start=original_config.model.params.linear_start, | |
beta_end=original_config.model.params.linear_end, | |
beta_schedule="scaled_linear", | |
) | |
return schedular | |
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_unet_checkpoint | |
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False): | |
""" | |
Takes a state dict and a config, and returns a converted checkpoint. Compared to the original Stable Diffusion | |
conversion, this function additionally converts the learnt film embedding linear layer. | |
""" | |
# extract state_dict for UNet | |
unet_state_dict = {} | |
keys = list(checkpoint.keys()) | |
unet_key = "model.diffusion_model." | |
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: | |
print(f"Checkpoint {path} has both EMA and non-EMA weights.") | |
print( | |
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith("model.diffusion_model"): | |
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) | |
else: | |
if sum(k.startswith("model_ema") for k in keys) > 100: | |
print( | |
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith(unet_key): | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
new_checkpoint = {} | |
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] | |
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] | |
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] | |
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] | |
new_checkpoint["class_embedding.weight"] = unet_state_dict["film_emb.weight"] | |
new_checkpoint["class_embedding.bias"] = unet_state_dict["film_emb.bias"] | |
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
# Retrieves the keys for the input blocks only | |
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
input_blocks = { | |
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
for layer_id in range(num_input_blocks) | |
} | |
# Retrieves the keys for the middle blocks only | |
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
middle_blocks = { | |
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
for layer_id in range(num_middle_blocks) | |
} | |
# Retrieves the keys for the output blocks only | |
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
output_blocks = { | |
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
for layer_id in range(num_output_blocks) | |
} | |
for i in range(1, num_input_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
] | |
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.bias" | |
) | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
resnet_0 = middle_blocks[0] | |
attentions = middle_blocks[1] | |
resnet_1 = middle_blocks[2] | |
resnet_0_paths = renew_resnet_paths(resnet_0) | |
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
resnet_1_paths = renew_resnet_paths(resnet_1) | |
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
attentions_paths = renew_attention_paths(attentions) | |
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint( | |
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
for i in range(num_output_blocks): | |
block_id = i // (config["layers_per_block"] + 1) | |
layer_in_block_id = i % (config["layers_per_block"] + 1) | |
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
output_block_list = {} | |
for layer in output_block_layers: | |
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
if layer_id in output_block_list: | |
output_block_list[layer_id].append(layer_name) | |
else: | |
output_block_list[layer_id] = [layer_name] | |
if len(output_block_list) > 1: | |
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] | |
resnet_0_paths = renew_resnet_paths(resnets) | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
output_block_list = {k: sorted(v) for k, v in output_block_list.items()} | |
if ["conv.bias", "conv.weight"] in output_block_list.values(): | |
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.weight" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.bias" | |
] | |
# Clear attentions as they have been attributed above. | |
if len(attentions) == 2: | |
attentions = [] | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = { | |
"old": f"output_blocks.{i}.1", | |
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
else: | |
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
for path in resnet_0_paths: | |
old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
new_checkpoint[new_path] = unet_state_dict[old_path] | |
return new_checkpoint | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.convert_ldm_vae_checkpoint | |
def convert_ldm_vae_checkpoint(checkpoint, config): | |
# extract state dict for VAE | |
vae_state_dict = {} | |
vae_key = "first_stage_model." | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
if key.startswith(vae_key): | |
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
new_checkpoint = {} | |
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
down_blocks = { | |
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
} | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
up_blocks = { | |
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
} | |
for i in range(num_down_blocks): | |
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.weight" | |
) | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.bias" | |
) | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [ | |
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
] | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.weight" | |
] | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.bias" | |
] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
return new_checkpoint | |
CLAP_KEYS_TO_MODIFY_MAPPING = { | |
"text_branch": "text_model", | |
"attn": "attention.self", | |
"self.proj": "output.dense", | |
"attention.self_mask": "attn_mask", | |
"mlp.fc1": "intermediate.dense", | |
"mlp.fc2": "output.dense", | |
"norm1": "layernorm_before", | |
"norm2": "layernorm_after", | |
"bn0": "batch_norm", | |
} | |
CLAP_KEYS_TO_IGNORE = ["text_transform"] | |
CLAP_EXPECTED_MISSING_KEYS = ["text_model.embeddings.token_type_ids"] | |
def convert_open_clap_checkpoint(checkpoint): | |
""" | |
Takes a state dict and returns a converted CLAP checkpoint. | |
""" | |
# extract state dict for CLAP text embedding model, discarding the audio component | |
model_state_dict = {} | |
model_key = "cond_stage_model.model.text_" | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
if key.startswith(model_key): | |
model_state_dict[key.replace(model_key, "text_")] = checkpoint.get(key) | |
new_checkpoint = {} | |
sequential_layers_pattern = r".*sequential.(\d+).*" | |
text_projection_pattern = r".*_projection.(\d+).*" | |
for key, value in model_state_dict.items(): | |
# check if key should be ignored in mapping | |
if key.split(".")[0] in CLAP_KEYS_TO_IGNORE: | |
continue | |
# check if any key needs to be modified | |
for key_to_modify, new_key in CLAP_KEYS_TO_MODIFY_MAPPING.items(): | |
if key_to_modify in key: | |
key = key.replace(key_to_modify, new_key) | |
if re.match(sequential_layers_pattern, key): | |
# replace sequential layers with list | |
sequential_layer = re.match(sequential_layers_pattern, key).group(1) | |
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.") | |
elif re.match(text_projection_pattern, key): | |
projecton_layer = int(re.match(text_projection_pattern, key).group(1)) | |
# Because in CLAP they use `nn.Sequential`... | |
transformers_projection_layer = 1 if projecton_layer == 0 else 2 | |
key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.") | |
if "audio" and "qkv" in key: | |
# split qkv into query key and value | |
mixed_qkv = value | |
qkv_dim = mixed_qkv.size(0) // 3 | |
query_layer = mixed_qkv[:qkv_dim] | |
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2] | |
value_layer = mixed_qkv[qkv_dim * 2 :] | |
new_checkpoint[key.replace("qkv", "query")] = query_layer | |
new_checkpoint[key.replace("qkv", "key")] = key_layer | |
new_checkpoint[key.replace("qkv", "value")] = value_layer | |
else: | |
new_checkpoint[key] = value | |
return new_checkpoint | |
def create_transformers_vocoder_config(original_config): | |
""" | |
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model. | |
""" | |
vocoder_params = original_config.model.params.vocoder_config.params | |
config = { | |
"model_in_dim": vocoder_params.num_mels, | |
"sampling_rate": vocoder_params.sampling_rate, | |
"upsample_initial_channel": vocoder_params.upsample_initial_channel, | |
"upsample_rates": list(vocoder_params.upsample_rates), | |
"upsample_kernel_sizes": list(vocoder_params.upsample_kernel_sizes), | |
"resblock_kernel_sizes": list(vocoder_params.resblock_kernel_sizes), | |
"resblock_dilation_sizes": [ | |
list(resblock_dilation) for resblock_dilation in vocoder_params.resblock_dilation_sizes | |
], | |
"normalize_before": False, | |
} | |
return config | |
def convert_hifigan_checkpoint(checkpoint, config): | |
""" | |
Takes a state dict and config, and returns a converted HiFiGAN vocoder checkpoint. | |
""" | |
# extract state dict for vocoder | |
vocoder_state_dict = {} | |
vocoder_key = "first_stage_model.vocoder." | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
if key.startswith(vocoder_key): | |
vocoder_state_dict[key.replace(vocoder_key, "")] = checkpoint.get(key) | |
# fix upsampler keys, everything else is correct already | |
for i in range(len(config.upsample_rates)): | |
vocoder_state_dict[f"upsampler.{i}.weight"] = vocoder_state_dict.pop(f"ups.{i}.weight") | |
vocoder_state_dict[f"upsampler.{i}.bias"] = vocoder_state_dict.pop(f"ups.{i}.bias") | |
if not config.normalize_before: | |
# if we don't set normalize_before then these variables are unused, so we set them to their initialised values | |
vocoder_state_dict["mean"] = torch.zeros(config.model_in_dim) | |
vocoder_state_dict["scale"] = torch.ones(config.model_in_dim) | |
return vocoder_state_dict | |
# Adapted from https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation/blob/84a0384742a22bd80c44e903e241f0623e874f1d/audioldm/utils.py#L72-L73 | |
DEFAULT_CONFIG = { | |
"model": { | |
"params": { | |
"linear_start": 0.0015, | |
"linear_end": 0.0195, | |
"timesteps": 1000, | |
"channels": 8, | |
"scale_by_std": True, | |
"unet_config": { | |
"target": "audioldm.latent_diffusion.openaimodel.UNetModel", | |
"params": { | |
"extra_film_condition_dim": 512, | |
"extra_film_use_concat": True, | |
"in_channels": 8, | |
"out_channels": 8, | |
"model_channels": 128, | |
"attention_resolutions": [8, 4, 2], | |
"num_res_blocks": 2, | |
"channel_mult": [1, 2, 3, 5], | |
"num_head_channels": 32, | |
}, | |
}, | |
"first_stage_config": { | |
"target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL", | |
"params": { | |
"embed_dim": 8, | |
"ddconfig": { | |
"z_channels": 8, | |
"resolution": 256, | |
"in_channels": 1, | |
"out_ch": 1, | |
"ch": 128, | |
"ch_mult": [1, 2, 4], | |
"num_res_blocks": 2, | |
}, | |
}, | |
}, | |
"vocoder_config": { | |
"target": "audioldm.first_stage_model.vocoder", | |
"params": { | |
"upsample_rates": [5, 4, 2, 2, 2], | |
"upsample_kernel_sizes": [16, 16, 8, 4, 4], | |
"upsample_initial_channel": 1024, | |
"resblock_kernel_sizes": [3, 7, 11], | |
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
"num_mels": 64, | |
"sampling_rate": 16000, | |
}, | |
}, | |
}, | |
}, | |
} | |
def load_pipeline_from_original_audioldm_ckpt( | |
checkpoint_path: str, | |
original_config_file: str = None, | |
image_size: int = 512, | |
prediction_type: str = None, | |
extract_ema: bool = False, | |
scheduler_type: str = "ddim", | |
num_in_channels: int = None, | |
device: str = None, | |
from_safetensors: bool = False, | |
) -> AudioLDMPipeline: | |
""" | |
Load an AudioLDM pipeline object from a `.ckpt`/`.safetensors` file and (ideally) a `.yaml` config file. | |
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the | |
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is | |
recommended that you override the default values and/or supply an `original_config_file` wherever possible. | |
:param checkpoint_path: Path to `.ckpt` file. :param original_config_file: Path to `.yaml` config file | |
corresponding to the original architecture. | |
If `None`, will be automatically instantiated based on default values. | |
:param image_size: The image size that the model was trained on. Use 512 for original AudioLDM checkpoints. :param | |
prediction_type: The prediction type that the model was trained on. Use `'epsilon'` for original | |
AudioLDM checkpoints. | |
:param num_in_channels: The number of input channels. If `None` number of input channels will be automatically | |
inferred. | |
:param scheduler_type: Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", | |
"euler-ancestral", "dpm", "ddim"]`. | |
:param extract_ema: Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract | |
the EMA weights or not. Defaults to `False`. Pass `True` to extract the EMA weights. EMA weights usually | |
yield higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning. | |
:param device: The device to use. Pass `None` to determine automatically. :param from_safetensors: If | |
`checkpoint_path` is in `safetensors` format, load checkpoint with safetensors | |
instead of PyTorch. | |
:return: An AudioLDMPipeline object representing the passed-in `.ckpt`/`.safetensors` file. | |
""" | |
if not is_omegaconf_available(): | |
raise ValueError(BACKENDS_MAPPING["omegaconf"][1]) | |
from omegaconf import OmegaConf | |
if from_safetensors: | |
if not is_safetensors_available(): | |
raise ValueError(BACKENDS_MAPPING["safetensors"][1]) | |
from safetensors import safe_open | |
checkpoint = {} | |
with safe_open(checkpoint_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
checkpoint[key] = f.get_tensor(key) | |
else: | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
else: | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
if "state_dict" in checkpoint: | |
checkpoint = checkpoint["state_dict"] | |
if original_config_file is None: | |
original_config = DEFAULT_CONFIG | |
original_config = OmegaConf.create(original_config) | |
else: | |
original_config = OmegaConf.load(original_config_file) | |
if num_in_channels is not None: | |
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels | |
if ( | |
"parameterization" in original_config["model"]["params"] | |
and original_config["model"]["params"]["parameterization"] == "v" | |
): | |
if prediction_type is None: | |
prediction_type = "v_prediction" | |
else: | |
if prediction_type is None: | |
prediction_type = "epsilon" | |
if image_size is None: | |
image_size = 512 | |
num_train_timesteps = original_config.model.params.timesteps | |
beta_start = original_config.model.params.linear_start | |
beta_end = original_config.model.params.linear_end | |
scheduler = DDIMScheduler( | |
beta_end=beta_end, | |
beta_schedule="scaled_linear", | |
beta_start=beta_start, | |
num_train_timesteps=num_train_timesteps, | |
steps_offset=1, | |
clip_sample=False, | |
set_alpha_to_one=False, | |
prediction_type=prediction_type, | |
) | |
# make sure scheduler works correctly with DDIM | |
scheduler.register_to_config(clip_sample=False) | |
if scheduler_type == "pndm": | |
config = dict(scheduler.config) | |
config["skip_prk_steps"] = True | |
scheduler = PNDMScheduler.from_config(config) | |
elif scheduler_type == "lms": | |
scheduler = LMSDiscreteScheduler.from_config(scheduler.config) | |
elif scheduler_type == "heun": | |
scheduler = HeunDiscreteScheduler.from_config(scheduler.config) | |
elif scheduler_type == "euler": | |
scheduler = EulerDiscreteScheduler.from_config(scheduler.config) | |
elif scheduler_type == "euler-ancestral": | |
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config) | |
elif scheduler_type == "dpm": | |
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) | |
elif scheduler_type == "ddim": | |
scheduler = scheduler | |
else: | |
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!") | |
# Convert the UNet2DModel | |
unet_config = create_unet_diffusers_config(original_config, image_size=image_size) | |
unet = UNet2DConditionModel(**unet_config) | |
converted_unet_checkpoint = convert_ldm_unet_checkpoint( | |
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema | |
) | |
unet.load_state_dict(converted_unet_checkpoint) | |
# Convert the VAE model | |
vae_config = create_vae_diffusers_config(original_config, checkpoint=checkpoint, image_size=image_size) | |
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) | |
vae = AutoencoderKL(**vae_config) | |
vae.load_state_dict(converted_vae_checkpoint) | |
# Convert the text model | |
# AudioLDM uses the same configuration and tokenizer as the original CLAP model | |
config = ClapTextConfig.from_pretrained("laion/clap-htsat-unfused") | |
tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") | |
converted_text_model = convert_open_clap_checkpoint(checkpoint) | |
text_model = ClapTextModelWithProjection(config) | |
missing_keys, unexpected_keys = text_model.load_state_dict(converted_text_model, strict=False) | |
# we expect not to have token_type_ids in our original state dict so let's ignore them | |
missing_keys = list(set(missing_keys) - set(CLAP_EXPECTED_MISSING_KEYS)) | |
if len(unexpected_keys) > 0: | |
raise ValueError(f"Unexpected keys when loading CLAP model: {unexpected_keys}") | |
if len(missing_keys) > 0: | |
raise ValueError(f"Missing keys when loading CLAP model: {missing_keys}") | |
# Convert the vocoder model | |
vocoder_config = create_transformers_vocoder_config(original_config) | |
vocoder_config = SpeechT5HifiGanConfig(**vocoder_config) | |
converted_vocoder_checkpoint = convert_hifigan_checkpoint(checkpoint, vocoder_config) | |
vocoder = SpeechT5HifiGan(vocoder_config) | |
vocoder.load_state_dict(converted_vocoder_checkpoint) | |
# Instantiate the diffusers pipeline | |
pipe = AudioLDMPipeline( | |
vae=vae, | |
text_encoder=text_model, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
vocoder=vocoder, | |
) | |
return pipe | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--original_config_file", | |
default=None, | |
type=str, | |
help="The YAML config file corresponding to the original architecture.", | |
) | |
parser.add_argument( | |
"--num_in_channels", | |
default=None, | |
type=int, | |
help="The number of input channels. If `None` number of input channels will be automatically inferred.", | |
) | |
parser.add_argument( | |
"--scheduler_type", | |
default="ddim", | |
type=str, | |
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", | |
) | |
parser.add_argument( | |
"--image_size", | |
default=None, | |
type=int, | |
help=("The image size that the model was trained on."), | |
) | |
parser.add_argument( | |
"--prediction_type", | |
default=None, | |
type=str, | |
help=("The prediction type that the model was trained on."), | |
) | |
parser.add_argument( | |
"--extract_ema", | |
action="store_true", | |
help=( | |
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" | |
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" | |
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." | |
), | |
) | |
parser.add_argument( | |
"--from_safetensors", | |
action="store_true", | |
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", | |
) | |
parser.add_argument( | |
"--to_safetensors", | |
action="store_true", | |
help="Whether to store pipeline in safetensors format or not.", | |
) | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") | |
args = parser.parse_args() | |
pipe = load_pipeline_from_original_audioldm_ckpt( | |
checkpoint_path=args.checkpoint_path, | |
original_config_file=args.original_config_file, | |
image_size=args.image_size, | |
prediction_type=args.prediction_type, | |
extract_ema=args.extract_ema, | |
scheduler_type=args.scheduler_type, | |
num_in_channels=args.num_in_channels, | |
from_safetensors=args.from_safetensors, | |
device=args.device, | |
) | |
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | |