Spaces:
Running
on
L4
Running
on
L4
""" | |
This script ports models from VQ-diffusion (https://github.com/microsoft/VQ-Diffusion) to diffusers. | |
It currently only supports porting the ITHQ dataset. | |
ITHQ dataset: | |
```sh | |
# From the root directory of diffusers. | |
# Download the VQVAE checkpoint | |
$ wget https://facevcstandard.blob.core.windows.net/v-zhictang/Improved-VQ-Diffusion_model_release/ithq_vqvae.pth?sv=2020-10-02&st=2022-05-30T15%3A17%3A18Z&se=2030-05-31T15%3A17%3A00Z&sr=b&sp=r&sig=1jVavHFPpUjDs%2FTO1V3PTezaNbPp2Nx8MxiWI7y6fEY%3D -O ithq_vqvae.pth | |
# Download the VQVAE config | |
# NOTE that in VQ-diffusion the documented file is `configs/ithq.yaml` but the target class | |
# `image_synthesis.modeling.codecs.image_codec.ema_vqvae.PatchVQVAE` | |
# loads `OUTPUT/pretrained_model/taming_dvae/config.yaml` | |
$ wget https://raw.githubusercontent.com/microsoft/VQ-Diffusion/main/OUTPUT/pretrained_model/taming_dvae/config.yaml -O ithq_vqvae.yaml | |
# Download the main model checkpoint | |
$ wget https://facevcstandard.blob.core.windows.net/v-zhictang/Improved-VQ-Diffusion_model_release/ithq_learnable.pth?sv=2020-10-02&st=2022-05-30T10%3A22%3A06Z&se=2030-05-31T10%3A22%3A00Z&sr=b&sp=r&sig=GOE%2Bza02%2FPnGxYVOOPtwrTR4RA3%2F5NVgMxdW4kjaEZ8%3D -O ithq_learnable.pth | |
# Download the main model config | |
$ wget https://raw.githubusercontent.com/microsoft/VQ-Diffusion/main/configs/ithq.yaml -O ithq.yaml | |
# run the convert script | |
$ python ./scripts/convert_vq_diffusion_to_diffusers.py \ | |
--checkpoint_path ./ithq_learnable.pth \ | |
--original_config_file ./ithq.yaml \ | |
--vqvae_checkpoint_path ./ithq_vqvae.pth \ | |
--vqvae_original_config_file ./ithq_vqvae.yaml \ | |
--dump_path <path to save pre-trained `VQDiffusionPipeline`> | |
``` | |
""" | |
import argparse | |
import tempfile | |
import torch | |
import yaml | |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from yaml.loader import FullLoader | |
from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel | |
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings | |
try: | |
from omegaconf import OmegaConf | |
except ImportError: | |
raise ImportError( | |
"OmegaConf is required to convert the VQ Diffusion checkpoints. Please install it with `pip install" | |
" OmegaConf`." | |
) | |
# vqvae model | |
PORTED_VQVAES = ["image_synthesis.modeling.codecs.image_codec.patch_vqgan.PatchVQGAN"] | |
def vqvae_model_from_original_config(original_config): | |
assert original_config.target in PORTED_VQVAES, f"{original_config.target} has not yet been ported to diffusers." | |
original_config = original_config.params | |
original_encoder_config = original_config.encoder_config.params | |
original_decoder_config = original_config.decoder_config.params | |
in_channels = original_encoder_config.in_channels | |
out_channels = original_decoder_config.out_ch | |
down_block_types = get_down_block_types(original_encoder_config) | |
up_block_types = get_up_block_types(original_decoder_config) | |
assert original_encoder_config.ch == original_decoder_config.ch | |
assert original_encoder_config.ch_mult == original_decoder_config.ch_mult | |
block_out_channels = tuple( | |
[original_encoder_config.ch * a_ch_mult for a_ch_mult in original_encoder_config.ch_mult] | |
) | |
assert original_encoder_config.num_res_blocks == original_decoder_config.num_res_blocks | |
layers_per_block = original_encoder_config.num_res_blocks | |
assert original_encoder_config.z_channels == original_decoder_config.z_channels | |
latent_channels = original_encoder_config.z_channels | |
num_vq_embeddings = original_config.n_embed | |
# Hard coded value for ResnetBlock.GoupNorm(num_groups) in VQ-diffusion | |
norm_num_groups = 32 | |
e_dim = original_config.embed_dim | |
model = VQModel( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
down_block_types=down_block_types, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
latent_channels=latent_channels, | |
num_vq_embeddings=num_vq_embeddings, | |
norm_num_groups=norm_num_groups, | |
vq_embed_dim=e_dim, | |
) | |
return model | |
def get_down_block_types(original_encoder_config): | |
attn_resolutions = coerce_attn_resolutions(original_encoder_config.attn_resolutions) | |
num_resolutions = len(original_encoder_config.ch_mult) | |
resolution = coerce_resolution(original_encoder_config.resolution) | |
curr_res = resolution | |
down_block_types = [] | |
for _ in range(num_resolutions): | |
if curr_res in attn_resolutions: | |
down_block_type = "AttnDownEncoderBlock2D" | |
else: | |
down_block_type = "DownEncoderBlock2D" | |
down_block_types.append(down_block_type) | |
curr_res = [r // 2 for r in curr_res] | |
return down_block_types | |
def get_up_block_types(original_decoder_config): | |
attn_resolutions = coerce_attn_resolutions(original_decoder_config.attn_resolutions) | |
num_resolutions = len(original_decoder_config.ch_mult) | |
resolution = coerce_resolution(original_decoder_config.resolution) | |
curr_res = [r // 2 ** (num_resolutions - 1) for r in resolution] | |
up_block_types = [] | |
for _ in reversed(range(num_resolutions)): | |
if curr_res in attn_resolutions: | |
up_block_type = "AttnUpDecoderBlock2D" | |
else: | |
up_block_type = "UpDecoderBlock2D" | |
up_block_types.append(up_block_type) | |
curr_res = [r * 2 for r in curr_res] | |
return up_block_types | |
def coerce_attn_resolutions(attn_resolutions): | |
attn_resolutions = OmegaConf.to_object(attn_resolutions) | |
attn_resolutions_ = [] | |
for ar in attn_resolutions: | |
if isinstance(ar, (list, tuple)): | |
attn_resolutions_.append(list(ar)) | |
else: | |
attn_resolutions_.append([ar, ar]) | |
return attn_resolutions_ | |
def coerce_resolution(resolution): | |
resolution = OmegaConf.to_object(resolution) | |
if isinstance(resolution, int): | |
resolution = [resolution, resolution] # H, W | |
elif isinstance(resolution, (tuple, list)): | |
resolution = list(resolution) | |
else: | |
raise ValueError("Unknown type of resolution:", resolution) | |
return resolution | |
# done vqvae model | |
# vqvae checkpoint | |
def vqvae_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): | |
diffusers_checkpoint = {} | |
diffusers_checkpoint.update(vqvae_encoder_to_diffusers_checkpoint(model, checkpoint)) | |
# quant_conv | |
diffusers_checkpoint.update( | |
{ | |
"quant_conv.weight": checkpoint["quant_conv.weight"], | |
"quant_conv.bias": checkpoint["quant_conv.bias"], | |
} | |
) | |
# quantize | |
diffusers_checkpoint.update({"quantize.embedding.weight": checkpoint["quantize.embedding"]}) | |
# post_quant_conv | |
diffusers_checkpoint.update( | |
{ | |
"post_quant_conv.weight": checkpoint["post_quant_conv.weight"], | |
"post_quant_conv.bias": checkpoint["post_quant_conv.bias"], | |
} | |
) | |
# decoder | |
diffusers_checkpoint.update(vqvae_decoder_to_diffusers_checkpoint(model, checkpoint)) | |
return diffusers_checkpoint | |
def vqvae_encoder_to_diffusers_checkpoint(model, checkpoint): | |
diffusers_checkpoint = {} | |
# conv_in | |
diffusers_checkpoint.update( | |
{ | |
"encoder.conv_in.weight": checkpoint["encoder.conv_in.weight"], | |
"encoder.conv_in.bias": checkpoint["encoder.conv_in.bias"], | |
} | |
) | |
# down_blocks | |
for down_block_idx, down_block in enumerate(model.encoder.down_blocks): | |
diffusers_down_block_prefix = f"encoder.down_blocks.{down_block_idx}" | |
down_block_prefix = f"encoder.down.{down_block_idx}" | |
# resnets | |
for resnet_idx, resnet in enumerate(down_block.resnets): | |
diffusers_resnet_prefix = f"{diffusers_down_block_prefix}.resnets.{resnet_idx}" | |
resnet_prefix = f"{down_block_prefix}.block.{resnet_idx}" | |
diffusers_checkpoint.update( | |
vqvae_resnet_to_diffusers_checkpoint( | |
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix | |
) | |
) | |
# downsample | |
# do not include the downsample when on the last down block | |
# There is no downsample on the last down block | |
if down_block_idx != len(model.encoder.down_blocks) - 1: | |
# There's a single downsample in the original checkpoint but a list of downsamples | |
# in the diffusers model. | |
diffusers_downsample_prefix = f"{diffusers_down_block_prefix}.downsamplers.0.conv" | |
downsample_prefix = f"{down_block_prefix}.downsample.conv" | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"], | |
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"], | |
} | |
) | |
# attentions | |
if hasattr(down_block, "attentions"): | |
for attention_idx, _ in enumerate(down_block.attentions): | |
diffusers_attention_prefix = f"{diffusers_down_block_prefix}.attentions.{attention_idx}" | |
attention_prefix = f"{down_block_prefix}.attn.{attention_idx}" | |
diffusers_checkpoint.update( | |
vqvae_attention_to_diffusers_checkpoint( | |
checkpoint, | |
diffusers_attention_prefix=diffusers_attention_prefix, | |
attention_prefix=attention_prefix, | |
) | |
) | |
# mid block | |
# mid block attentions | |
# There is a single hardcoded attention block in the middle of the VQ-diffusion encoder | |
diffusers_attention_prefix = "encoder.mid_block.attentions.0" | |
attention_prefix = "encoder.mid.attn_1" | |
diffusers_checkpoint.update( | |
vqvae_attention_to_diffusers_checkpoint( | |
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix | |
) | |
) | |
# mid block resnets | |
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets): | |
diffusers_resnet_prefix = f"encoder.mid_block.resnets.{diffusers_resnet_idx}" | |
# the hardcoded prefixes to `block_` are 1 and 2 | |
orig_resnet_idx = diffusers_resnet_idx + 1 | |
# There are two hardcoded resnets in the middle of the VQ-diffusion encoder | |
resnet_prefix = f"encoder.mid.block_{orig_resnet_idx}" | |
diffusers_checkpoint.update( | |
vqvae_resnet_to_diffusers_checkpoint( | |
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix | |
) | |
) | |
diffusers_checkpoint.update( | |
{ | |
# conv_norm_out | |
"encoder.conv_norm_out.weight": checkpoint["encoder.norm_out.weight"], | |
"encoder.conv_norm_out.bias": checkpoint["encoder.norm_out.bias"], | |
# conv_out | |
"encoder.conv_out.weight": checkpoint["encoder.conv_out.weight"], | |
"encoder.conv_out.bias": checkpoint["encoder.conv_out.bias"], | |
} | |
) | |
return diffusers_checkpoint | |
def vqvae_decoder_to_diffusers_checkpoint(model, checkpoint): | |
diffusers_checkpoint = {} | |
# conv in | |
diffusers_checkpoint.update( | |
{ | |
"decoder.conv_in.weight": checkpoint["decoder.conv_in.weight"], | |
"decoder.conv_in.bias": checkpoint["decoder.conv_in.bias"], | |
} | |
) | |
# up_blocks | |
for diffusers_up_block_idx, up_block in enumerate(model.decoder.up_blocks): | |
# up_blocks are stored in reverse order in the VQ-diffusion checkpoint | |
orig_up_block_idx = len(model.decoder.up_blocks) - 1 - diffusers_up_block_idx | |
diffusers_up_block_prefix = f"decoder.up_blocks.{diffusers_up_block_idx}" | |
up_block_prefix = f"decoder.up.{orig_up_block_idx}" | |
# resnets | |
for resnet_idx, resnet in enumerate(up_block.resnets): | |
diffusers_resnet_prefix = f"{diffusers_up_block_prefix}.resnets.{resnet_idx}" | |
resnet_prefix = f"{up_block_prefix}.block.{resnet_idx}" | |
diffusers_checkpoint.update( | |
vqvae_resnet_to_diffusers_checkpoint( | |
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix | |
) | |
) | |
# upsample | |
# there is no up sample on the last up block | |
if diffusers_up_block_idx != len(model.decoder.up_blocks) - 1: | |
# There's a single upsample in the VQ-diffusion checkpoint but a list of downsamples | |
# in the diffusers model. | |
diffusers_downsample_prefix = f"{diffusers_up_block_prefix}.upsamplers.0.conv" | |
downsample_prefix = f"{up_block_prefix}.upsample.conv" | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"], | |
f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"], | |
} | |
) | |
# attentions | |
if hasattr(up_block, "attentions"): | |
for attention_idx, _ in enumerate(up_block.attentions): | |
diffusers_attention_prefix = f"{diffusers_up_block_prefix}.attentions.{attention_idx}" | |
attention_prefix = f"{up_block_prefix}.attn.{attention_idx}" | |
diffusers_checkpoint.update( | |
vqvae_attention_to_diffusers_checkpoint( | |
checkpoint, | |
diffusers_attention_prefix=diffusers_attention_prefix, | |
attention_prefix=attention_prefix, | |
) | |
) | |
# mid block | |
# mid block attentions | |
# There is a single hardcoded attention block in the middle of the VQ-diffusion decoder | |
diffusers_attention_prefix = "decoder.mid_block.attentions.0" | |
attention_prefix = "decoder.mid.attn_1" | |
diffusers_checkpoint.update( | |
vqvae_attention_to_diffusers_checkpoint( | |
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix | |
) | |
) | |
# mid block resnets | |
for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets): | |
diffusers_resnet_prefix = f"decoder.mid_block.resnets.{diffusers_resnet_idx}" | |
# the hardcoded prefixes to `block_` are 1 and 2 | |
orig_resnet_idx = diffusers_resnet_idx + 1 | |
# There are two hardcoded resnets in the middle of the VQ-diffusion decoder | |
resnet_prefix = f"decoder.mid.block_{orig_resnet_idx}" | |
diffusers_checkpoint.update( | |
vqvae_resnet_to_diffusers_checkpoint( | |
resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix | |
) | |
) | |
diffusers_checkpoint.update( | |
{ | |
# conv_norm_out | |
"decoder.conv_norm_out.weight": checkpoint["decoder.norm_out.weight"], | |
"decoder.conv_norm_out.bias": checkpoint["decoder.norm_out.bias"], | |
# conv_out | |
"decoder.conv_out.weight": checkpoint["decoder.conv_out.weight"], | |
"decoder.conv_out.bias": checkpoint["decoder.conv_out.bias"], | |
} | |
) | |
return diffusers_checkpoint | |
def vqvae_resnet_to_diffusers_checkpoint(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix): | |
rv = { | |
# norm1 | |
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.norm1.weight"], | |
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.norm1.bias"], | |
# conv1 | |
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"], | |
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"], | |
# norm2 | |
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.norm2.weight"], | |
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.norm2.bias"], | |
# conv2 | |
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"], | |
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"], | |
} | |
if resnet.conv_shortcut is not None: | |
rv.update( | |
{ | |
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"], | |
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"], | |
} | |
) | |
return rv | |
def vqvae_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix): | |
return { | |
# group_norm | |
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"], | |
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"], | |
# query | |
f"{diffusers_attention_prefix}.query.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0], | |
f"{diffusers_attention_prefix}.query.bias": checkpoint[f"{attention_prefix}.q.bias"], | |
# key | |
f"{diffusers_attention_prefix}.key.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0], | |
f"{diffusers_attention_prefix}.key.bias": checkpoint[f"{attention_prefix}.k.bias"], | |
# value | |
f"{diffusers_attention_prefix}.value.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0], | |
f"{diffusers_attention_prefix}.value.bias": checkpoint[f"{attention_prefix}.v.bias"], | |
# proj_attn | |
f"{diffusers_attention_prefix}.proj_attn.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][ | |
:, :, 0, 0 | |
], | |
f"{diffusers_attention_prefix}.proj_attn.bias": checkpoint[f"{attention_prefix}.proj_out.bias"], | |
} | |
# done vqvae checkpoint | |
# transformer model | |
PORTED_DIFFUSIONS = ["image_synthesis.modeling.transformers.diffusion_transformer.DiffusionTransformer"] | |
PORTED_TRANSFORMERS = ["image_synthesis.modeling.transformers.transformer_utils.Text2ImageTransformer"] | |
PORTED_CONTENT_EMBEDDINGS = ["image_synthesis.modeling.embeddings.dalle_mask_image_embedding.DalleMaskImageEmbedding"] | |
def transformer_model_from_original_config( | |
original_diffusion_config, original_transformer_config, original_content_embedding_config | |
): | |
assert ( | |
original_diffusion_config.target in PORTED_DIFFUSIONS | |
), f"{original_diffusion_config.target} has not yet been ported to diffusers." | |
assert ( | |
original_transformer_config.target in PORTED_TRANSFORMERS | |
), f"{original_transformer_config.target} has not yet been ported to diffusers." | |
assert ( | |
original_content_embedding_config.target in PORTED_CONTENT_EMBEDDINGS | |
), f"{original_content_embedding_config.target} has not yet been ported to diffusers." | |
original_diffusion_config = original_diffusion_config.params | |
original_transformer_config = original_transformer_config.params | |
original_content_embedding_config = original_content_embedding_config.params | |
inner_dim = original_transformer_config["n_embd"] | |
n_heads = original_transformer_config["n_head"] | |
# VQ-Diffusion gives dimension of the multi-headed attention layers as the | |
# number of attention heads times the sequence length (the dimension) of a | |
# single head. We want to specify our attention blocks with those values | |
# specified separately | |
assert inner_dim % n_heads == 0 | |
d_head = inner_dim // n_heads | |
depth = original_transformer_config["n_layer"] | |
context_dim = original_transformer_config["condition_dim"] | |
num_embed = original_content_embedding_config["num_embed"] | |
# the number of embeddings in the transformer includes the mask embedding. | |
# the content embedding (the vqvae) does not include the mask embedding. | |
num_embed = num_embed + 1 | |
height = original_transformer_config["content_spatial_size"][0] | |
width = original_transformer_config["content_spatial_size"][1] | |
assert width == height, "width has to be equal to height" | |
dropout = original_transformer_config["resid_pdrop"] | |
num_embeds_ada_norm = original_diffusion_config["diffusion_step"] | |
model_kwargs = { | |
"attention_bias": True, | |
"cross_attention_dim": context_dim, | |
"attention_head_dim": d_head, | |
"num_layers": depth, | |
"dropout": dropout, | |
"num_attention_heads": n_heads, | |
"num_vector_embeds": num_embed, | |
"num_embeds_ada_norm": num_embeds_ada_norm, | |
"norm_num_groups": 32, | |
"sample_size": width, | |
"activation_fn": "geglu-approximate", | |
} | |
model = Transformer2DModel(**model_kwargs) | |
return model | |
# done transformer model | |
# transformer checkpoint | |
def transformer_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): | |
diffusers_checkpoint = {} | |
transformer_prefix = "transformer.transformer" | |
diffusers_latent_image_embedding_prefix = "latent_image_embedding" | |
latent_image_embedding_prefix = f"{transformer_prefix}.content_emb" | |
# DalleMaskImageEmbedding | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_latent_image_embedding_prefix}.emb.weight": checkpoint[ | |
f"{latent_image_embedding_prefix}.emb.weight" | |
], | |
f"{diffusers_latent_image_embedding_prefix}.height_emb.weight": checkpoint[ | |
f"{latent_image_embedding_prefix}.height_emb.weight" | |
], | |
f"{diffusers_latent_image_embedding_prefix}.width_emb.weight": checkpoint[ | |
f"{latent_image_embedding_prefix}.width_emb.weight" | |
], | |
} | |
) | |
# transformer blocks | |
for transformer_block_idx, transformer_block in enumerate(model.transformer_blocks): | |
diffusers_transformer_block_prefix = f"transformer_blocks.{transformer_block_idx}" | |
transformer_block_prefix = f"{transformer_prefix}.blocks.{transformer_block_idx}" | |
# ada norm block | |
diffusers_ada_norm_prefix = f"{diffusers_transformer_block_prefix}.norm1" | |
ada_norm_prefix = f"{transformer_block_prefix}.ln1" | |
diffusers_checkpoint.update( | |
transformer_ada_norm_to_diffusers_checkpoint( | |
checkpoint, diffusers_ada_norm_prefix=diffusers_ada_norm_prefix, ada_norm_prefix=ada_norm_prefix | |
) | |
) | |
# attention block | |
diffusers_attention_prefix = f"{diffusers_transformer_block_prefix}.attn1" | |
attention_prefix = f"{transformer_block_prefix}.attn1" | |
diffusers_checkpoint.update( | |
transformer_attention_to_diffusers_checkpoint( | |
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix | |
) | |
) | |
# ada norm block | |
diffusers_ada_norm_prefix = f"{diffusers_transformer_block_prefix}.norm2" | |
ada_norm_prefix = f"{transformer_block_prefix}.ln1_1" | |
diffusers_checkpoint.update( | |
transformer_ada_norm_to_diffusers_checkpoint( | |
checkpoint, diffusers_ada_norm_prefix=diffusers_ada_norm_prefix, ada_norm_prefix=ada_norm_prefix | |
) | |
) | |
# attention block | |
diffusers_attention_prefix = f"{diffusers_transformer_block_prefix}.attn2" | |
attention_prefix = f"{transformer_block_prefix}.attn2" | |
diffusers_checkpoint.update( | |
transformer_attention_to_diffusers_checkpoint( | |
checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix | |
) | |
) | |
# norm block | |
diffusers_norm_block_prefix = f"{diffusers_transformer_block_prefix}.norm3" | |
norm_block_prefix = f"{transformer_block_prefix}.ln2" | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_norm_block_prefix}.weight": checkpoint[f"{norm_block_prefix}.weight"], | |
f"{diffusers_norm_block_prefix}.bias": checkpoint[f"{norm_block_prefix}.bias"], | |
} | |
) | |
# feedforward block | |
diffusers_feedforward_prefix = f"{diffusers_transformer_block_prefix}.ff" | |
feedforward_prefix = f"{transformer_block_prefix}.mlp" | |
diffusers_checkpoint.update( | |
transformer_feedforward_to_diffusers_checkpoint( | |
checkpoint, | |
diffusers_feedforward_prefix=diffusers_feedforward_prefix, | |
feedforward_prefix=feedforward_prefix, | |
) | |
) | |
# to logits | |
diffusers_norm_out_prefix = "norm_out" | |
norm_out_prefix = f"{transformer_prefix}.to_logits.0" | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_norm_out_prefix}.weight": checkpoint[f"{norm_out_prefix}.weight"], | |
f"{diffusers_norm_out_prefix}.bias": checkpoint[f"{norm_out_prefix}.bias"], | |
} | |
) | |
diffusers_out_prefix = "out" | |
out_prefix = f"{transformer_prefix}.to_logits.1" | |
diffusers_checkpoint.update( | |
{ | |
f"{diffusers_out_prefix}.weight": checkpoint[f"{out_prefix}.weight"], | |
f"{diffusers_out_prefix}.bias": checkpoint[f"{out_prefix}.bias"], | |
} | |
) | |
return diffusers_checkpoint | |
def transformer_ada_norm_to_diffusers_checkpoint(checkpoint, *, diffusers_ada_norm_prefix, ada_norm_prefix): | |
return { | |
f"{diffusers_ada_norm_prefix}.emb.weight": checkpoint[f"{ada_norm_prefix}.emb.weight"], | |
f"{diffusers_ada_norm_prefix}.linear.weight": checkpoint[f"{ada_norm_prefix}.linear.weight"], | |
f"{diffusers_ada_norm_prefix}.linear.bias": checkpoint[f"{ada_norm_prefix}.linear.bias"], | |
} | |
def transformer_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix): | |
return { | |
# key | |
f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.key.weight"], | |
f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.key.bias"], | |
# query | |
f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.query.weight"], | |
f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.query.bias"], | |
# value | |
f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.value.weight"], | |
f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.value.bias"], | |
# linear out | |
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj.weight"], | |
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj.bias"], | |
} | |
def transformer_feedforward_to_diffusers_checkpoint(checkpoint, *, diffusers_feedforward_prefix, feedforward_prefix): | |
return { | |
f"{diffusers_feedforward_prefix}.net.0.proj.weight": checkpoint[f"{feedforward_prefix}.0.weight"], | |
f"{diffusers_feedforward_prefix}.net.0.proj.bias": checkpoint[f"{feedforward_prefix}.0.bias"], | |
f"{diffusers_feedforward_prefix}.net.2.weight": checkpoint[f"{feedforward_prefix}.2.weight"], | |
f"{diffusers_feedforward_prefix}.net.2.bias": checkpoint[f"{feedforward_prefix}.2.bias"], | |
} | |
# done transformer checkpoint | |
def read_config_file(filename): | |
# The yaml file contains annotations that certain values should | |
# loaded as tuples. By default, OmegaConf will panic when reading | |
# these. Instead, we can manually read the yaml with the FullLoader and then | |
# construct the OmegaConf object. | |
with open(filename) as f: | |
original_config = yaml.load(f, FullLoader) | |
return OmegaConf.create(original_config) | |
# We take separate arguments for the vqvae because the ITHQ vqvae config file | |
# is separate from the config file for the rest of the model. | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--vqvae_checkpoint_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to the vqvae checkpoint to convert.", | |
) | |
parser.add_argument( | |
"--vqvae_original_config_file", | |
default=None, | |
type=str, | |
required=True, | |
help="The YAML config file corresponding to the original architecture for the vqvae.", | |
) | |
parser.add_argument( | |
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--original_config_file", | |
default=None, | |
type=str, | |
required=True, | |
help="The YAML config file corresponding to the original architecture.", | |
) | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
parser.add_argument( | |
"--checkpoint_load_device", | |
default="cpu", | |
type=str, | |
required=False, | |
help="The device passed to `map_location` when loading checkpoints.", | |
) | |
# See link for how ema weights are always selected | |
# https://github.com/microsoft/VQ-Diffusion/blob/3c98e77f721db7c787b76304fa2c96a36c7b00af/inference_VQ_Diffusion.py#L65 | |
parser.add_argument( | |
"--no_use_ema", | |
action="store_true", | |
required=False, | |
help=( | |
"Set to not use the ema weights from the original VQ-Diffusion checkpoint. You probably do not want to set" | |
" it as the original VQ-Diffusion always uses the ema weights when loading models." | |
), | |
) | |
args = parser.parse_args() | |
use_ema = not args.no_use_ema | |
print(f"loading checkpoints to {args.checkpoint_load_device}") | |
checkpoint_map_location = torch.device(args.checkpoint_load_device) | |
# vqvae_model | |
print(f"loading vqvae, config: {args.vqvae_original_config_file}, checkpoint: {args.vqvae_checkpoint_path}") | |
vqvae_original_config = read_config_file(args.vqvae_original_config_file).model | |
vqvae_checkpoint = torch.load(args.vqvae_checkpoint_path, map_location=checkpoint_map_location)["model"] | |
with init_empty_weights(): | |
vqvae_model = vqvae_model_from_original_config(vqvae_original_config) | |
vqvae_diffusers_checkpoint = vqvae_original_checkpoint_to_diffusers_checkpoint(vqvae_model, vqvae_checkpoint) | |
with tempfile.NamedTemporaryFile() as vqvae_diffusers_checkpoint_file: | |
torch.save(vqvae_diffusers_checkpoint, vqvae_diffusers_checkpoint_file.name) | |
del vqvae_diffusers_checkpoint | |
del vqvae_checkpoint | |
load_checkpoint_and_dispatch(vqvae_model, vqvae_diffusers_checkpoint_file.name, device_map="auto") | |
print("done loading vqvae") | |
# done vqvae_model | |
# transformer_model | |
print( | |
f"loading transformer, config: {args.original_config_file}, checkpoint: {args.checkpoint_path}, use ema:" | |
f" {use_ema}" | |
) | |
original_config = read_config_file(args.original_config_file).model | |
diffusion_config = original_config.params.diffusion_config | |
transformer_config = original_config.params.diffusion_config.params.transformer_config | |
content_embedding_config = original_config.params.diffusion_config.params.content_emb_config | |
pre_checkpoint = torch.load(args.checkpoint_path, map_location=checkpoint_map_location) | |
if use_ema: | |
if "ema" in pre_checkpoint: | |
checkpoint = {} | |
for k, v in pre_checkpoint["model"].items(): | |
checkpoint[k] = v | |
for k, v in pre_checkpoint["ema"].items(): | |
# The ema weights are only used on the transformer. To mimic their key as if they came | |
# from the state_dict for the top level model, we prefix with an additional "transformer." | |
# See the source linked in the args.use_ema config for more information. | |
checkpoint[f"transformer.{k}"] = v | |
else: | |
print("attempted to load ema weights but no ema weights are specified in the loaded checkpoint.") | |
checkpoint = pre_checkpoint["model"] | |
else: | |
checkpoint = pre_checkpoint["model"] | |
del pre_checkpoint | |
with init_empty_weights(): | |
transformer_model = transformer_model_from_original_config( | |
diffusion_config, transformer_config, content_embedding_config | |
) | |
diffusers_transformer_checkpoint = transformer_original_checkpoint_to_diffusers_checkpoint( | |
transformer_model, checkpoint | |
) | |
# classifier free sampling embeddings interlude | |
# The learned embeddings are stored on the transformer in the original VQ-diffusion. We store them on a separate | |
# model, so we pull them off the checkpoint before the checkpoint is deleted. | |
learnable_classifier_free_sampling_embeddings = diffusion_config.params.learnable_cf | |
if learnable_classifier_free_sampling_embeddings: | |
learned_classifier_free_sampling_embeddings_embeddings = checkpoint["transformer.empty_text_embed"] | |
else: | |
learned_classifier_free_sampling_embeddings_embeddings = None | |
# done classifier free sampling embeddings interlude | |
with tempfile.NamedTemporaryFile() as diffusers_transformer_checkpoint_file: | |
torch.save(diffusers_transformer_checkpoint, diffusers_transformer_checkpoint_file.name) | |
del diffusers_transformer_checkpoint | |
del checkpoint | |
load_checkpoint_and_dispatch(transformer_model, diffusers_transformer_checkpoint_file.name, device_map="auto") | |
print("done loading transformer") | |
# done transformer_model | |
# text encoder | |
print("loading CLIP text encoder") | |
clip_name = "openai/clip-vit-base-patch32" | |
# The original VQ-Diffusion specifies the pad value by the int used in the | |
# returned tokens. Each model uses `0` as the pad value. The transformers clip api | |
# specifies the pad value via the token before it has been tokenized. The `!` pad | |
# token is the same as padding with the `0` pad value. | |
pad_token = "!" | |
tokenizer_model = CLIPTokenizer.from_pretrained(clip_name, pad_token=pad_token, device_map="auto") | |
assert tokenizer_model.convert_tokens_to_ids(pad_token) == 0 | |
text_encoder_model = CLIPTextModel.from_pretrained( | |
clip_name, | |
# `CLIPTextModel` does not support device_map="auto" | |
# device_map="auto" | |
) | |
print("done loading CLIP text encoder") | |
# done text encoder | |
# scheduler | |
scheduler_model = VQDiffusionScheduler( | |
# the scheduler has the same number of embeddings as the transformer | |
num_vec_classes=transformer_model.num_vector_embeds | |
) | |
# done scheduler | |
# learned classifier free sampling embeddings | |
with init_empty_weights(): | |
learned_classifier_free_sampling_embeddings_model = LearnedClassifierFreeSamplingEmbeddings( | |
learnable_classifier_free_sampling_embeddings, | |
hidden_size=text_encoder_model.config.hidden_size, | |
length=tokenizer_model.model_max_length, | |
) | |
learned_classifier_free_sampling_checkpoint = { | |
"embeddings": learned_classifier_free_sampling_embeddings_embeddings.float() | |
} | |
with tempfile.NamedTemporaryFile() as learned_classifier_free_sampling_checkpoint_file: | |
torch.save(learned_classifier_free_sampling_checkpoint, learned_classifier_free_sampling_checkpoint_file.name) | |
del learned_classifier_free_sampling_checkpoint | |
del learned_classifier_free_sampling_embeddings_embeddings | |
load_checkpoint_and_dispatch( | |
learned_classifier_free_sampling_embeddings_model, | |
learned_classifier_free_sampling_checkpoint_file.name, | |
device_map="auto", | |
) | |
# done learned classifier free sampling embeddings | |
print(f"saving VQ diffusion model, path: {args.dump_path}") | |
pipe = VQDiffusionPipeline( | |
vqvae=vqvae_model, | |
transformer=transformer_model, | |
tokenizer=tokenizer_model, | |
text_encoder=text_encoder_model, | |
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings_model, | |
scheduler=scheduler_model, | |
) | |
pipe.save_pretrained(args.dump_path) | |
print("done writing VQ diffusion model") | |