deepanway's picture
Uplaod files
f1069cc
raw
history blame
3.27 kB
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# InstructPix2Pix: Learning to Follow Image Editing Instructions
## Overview
[InstructPix2Pix: Learning to Follow Image Editing Instructions](https://arxiv.org/abs/2211.09800) by Tim Brooks, Aleksander Holynski and Alexei A. Efros.
The abstract of the paper is the following:
*We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models -- a language model (GPT-3) and a text-to-image model (Stable Diffusion) -- to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.*
Resources:
* [Project Page](https://www.timothybrooks.com/instruct-pix2pix).
* [Paper](https://arxiv.org/abs/2211.09800).
* [Original Code](https://github.com/timothybrooks/instruct-pix2pix).
* [Demo](https://huggingface.co/spaces/timbrooks/instruct-pix2pix).
## Available Pipelines:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionInstructPix2PixPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py) | *Text-Based Image Editing* | [🤗 Space](https://huggingface.co/spaces/timbrooks/instruct-pix2pix) |
<!-- TODO: add Colab -->
## Usage example
```python
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
image = download_image(url)
prompt = "make the mountains snowy"
images = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images
images[0].save("snowy_mountains.png")
```
## StableDiffusionInstructPix2PixPipeline
[[autodoc]] StableDiffusionInstructPix2PixPipeline
- __call__
- all