# Stable diffusion 2 Stable Diffusion 2 is a text-to-image _latent diffusion_ model built upon the work of [Stable Diffusion 1](https://stability.ai/blog/stable-diffusion-public-release). The project to train Stable Diffusion 2 was led by Robin Rombach and Katherine Crowson from [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/). *The Stable Diffusion 2.0 release includes robust text-to-image models trained using a brand new text encoder (OpenCLIP), developed by LAION with support from Stability AI, which greatly improves the quality of the generated images compared to earlier V1 releases. The text-to-image models in this release can generate images with default resolutions of both 512x512 pixels and 768x768 pixels. These models are trained on an aesthetic subset of the [LAION-5B dataset](https://laion.ai/blog/laion-5b/) created by the DeepFloyd team at Stability AI, which is then further filtered to remove adult content using [LAION’s NSFW filter](https://openreview.net/forum?id=M3Y74vmsMcY).* For more details about how Stable Diffusion 2 works and how it differs from Stable Diffusion 1, please refer to the official [launch announcement post](https://stability.ai/blog/stable-diffusion-v2-release). ## Tips ### Available checkpoints: Note that the architecture is more or less identical to [Stable Diffusion 1](./stable_diffusion/overview) so please refer to [this page](./stable_diffusion/overview) for API documentation. - *Text-to-Image (512x512 resolution)*: [stabilityai/stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) with [`StableDiffusionPipeline`] - *Text-to-Image (768x768 resolution)*: [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) with [`StableDiffusionPipeline`] - *Image Inpainting (512x512 resolution)*: [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) with [`StableDiffusionInpaintPipeline`] - *Super-Resolution (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) [`StableDiffusionUpscalePipeline`] - *Depth-to-Image (512x512 resolution)*: [stabilityai/stable-diffusion-2-depth](https://huggingface.co/stabilityai/stable-diffusion-2-depth) with [`StableDiffusionDepth2ImagePipeline`] We recommend using the [`DPMSolverMultistepScheduler`] as it's currently the fastest scheduler there is. ### Text-to-Image - *Text-to-Image (512x512 resolution)*: [stabilityai/stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) with [`StableDiffusionPipeline`] ```python from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler import torch repo_id = "stabilityai/stable-diffusion-2-base" pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "High quality photo of an astronaut riding a horse in space" image = pipe(prompt, num_inference_steps=25).images[0] image.save("astronaut.png") ``` - *Text-to-Image (768x768 resolution)*: [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) with [`StableDiffusionPipeline`] ```python from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler import torch repo_id = "stabilityai/stable-diffusion-2" pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "High quality photo of an astronaut riding a horse in space" image = pipe(prompt, guidance_scale=9, num_inference_steps=25).images[0] image.save("astronaut.png") ``` ### Image Inpainting - *Image Inpainting (512x512 resolution)*: [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) with [`StableDiffusionInpaintPipeline`] ```python import PIL import requests import torch from io import BytesIO from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler def download_image(url): response = requests.get(url) return PIL.Image.open(BytesIO(response.content)).convert("RGB") img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = download_image(img_url).resize((512, 512)) mask_image = download_image(mask_url).resize((512, 512)) repo_id = "stabilityai/stable-diffusion-2-inpainting" pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "Face of a yellow cat, high resolution, sitting on a park bench" image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=25).images[0] image.save("yellow_cat.png") ``` ### Super-Resolution - *Image Upscaling (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) with [`StableDiffusionUpscalePipeline`] ```python import requests from PIL import Image from io import BytesIO from diffusers import StableDiffusionUpscalePipeline import torch # load model and scheduler model_id = "stabilityai/stable-diffusion-x4-upscaler" pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipeline = pipeline.to("cuda") # let's download an image url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png" response = requests.get(url) low_res_img = Image.open(BytesIO(response.content)).convert("RGB") low_res_img = low_res_img.resize((128, 128)) prompt = "a white cat" upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0] upscaled_image.save("upsampled_cat.png") ``` ### Depth-to-Image - *Depth-Guided Text-to-Image*: [stabilityai/stable-diffusion-2-depth](https://huggingface.co/stabilityai/stable-diffusion-2-depth) [`StableDiffusionDepth2ImagePipeline`] ```python import torch import requests from PIL import Image from diffusers import StableDiffusionDepth2ImgPipeline pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-2-depth", torch_dtype=torch.float16, ).to("cuda") url = "http://images.cocodataset.org/val2017/000000039769.jpg" init_image = Image.open(requests.get(url, stream=True).raw) prompt = "two tigers" n_propmt = "bad, deformed, ugly, bad anotomy" image = pipe(prompt=prompt, image=init_image, negative_prompt=n_propmt, strength=0.7).images[0] ``` ### How to load and use different schedulers. The stable diffusion pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers that can be used with the stable diffusion pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] etc. To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`] method or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the [`EulerDiscreteScheduler`], you can do the following: ```python >>> from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler >>> pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2") >>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config) >>> # or >>> euler_scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2", subfolder="scheduler") >>> pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", scheduler=euler_scheduler) ```