File size: 5,491 Bytes
6b448ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps

from ...pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ...test_pipelines_common import PipelineTesterMixin


torch.backends.cuda.matmul.allow_tf32 = False


class DanceDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = DanceDiffusionPipeline
    params = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {
        "callback",
        "latents",
        "callback_steps",
        "output_type",
        "num_images_per_prompt",
    }
    batch_params = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
    test_attention_slicing = False
    test_cpu_offload = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet1DModel(
            block_out_channels=(32, 32, 64),
            extra_in_channels=16,
            sample_size=512,
            sample_rate=16_000,
            in_channels=2,
            out_channels=2,
            flip_sin_to_cos=True,
            use_timestep_embedding=False,
            time_embedding_type="fourier",
            mid_block_type="UNetMidBlock1D",
            down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
            up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
        )
        scheduler = IPNDMScheduler()

        components = {
            "unet": unet,
            "scheduler": scheduler,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "batch_size": 1,
            "generator": generator,
            "num_inference_steps": 4,
        }
        return inputs

    def test_dance_diffusion(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = DanceDiffusionPipeline(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = pipe(**inputs)
        audio = output.audios

        audio_slice = audio[0, -3:, -3:]

        assert audio.shape == (1, 2, components["unet"].sample_size)
        expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000])
        assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2

    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()


@slow
@require_torch_gpu
class PipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_dance_diffusion(self):
        device = torch_device

        pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k")
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        generator = torch.manual_seed(0)
        output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
        audio = output.audios

        audio_slice = audio[0, -3:, -3:]

        assert audio.shape == (1, 2, pipe.unet.sample_size)
        expected_slice = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020])

        assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2

    def test_dance_diffusion_fp16(self):
        device = torch_device

        pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k", torch_dtype=torch.float16)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        generator = torch.manual_seed(0)
        output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
        audio = output.audios

        audio_slice = audio[0, -3:, -3:]

        assert audio.shape == (1, 2, pipe.unet.sample_size)
        expected_slice = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341])

        assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2