Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel | |
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device | |
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps | |
from ...pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS | |
from ...test_pipelines_common import PipelineTesterMixin | |
torch.backends.cuda.matmul.allow_tf32 = False | |
class CycleDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = CycleDiffusionPipeline | |
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { | |
"negative_prompt", | |
"height", | |
"width", | |
"negative_prompt_embeds", | |
} | |
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} | |
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"}) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "An astronaut riding an elephant", | |
"source_prompt": "An astronaut riding a horse", | |
"image": image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"eta": 0.1, | |
"strength": 0.8, | |
"guidance_scale": 3, | |
"source_guidance_scale": 1, | |
"output_type": "numpy", | |
} | |
return inputs | |
def test_stable_diffusion_cycle(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = CycleDiffusionPipeline(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = pipe(**inputs) | |
images = output.images | |
image_slice = images[0, -3:, -3:, -1] | |
assert images.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_cycle_fp16(self): | |
components = self.get_dummy_components() | |
for name, module in components.items(): | |
if hasattr(module, "half"): | |
components[name] = module.half() | |
pipe = CycleDiffusionPipeline(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = pipe(**inputs) | |
images = output.images | |
image_slice = images[0, -3:, -3:, -1] | |
assert images.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_save_load_local(self): | |
return super().test_save_load_local() | |
def test_inference_batch_single_identical(self): | |
return super().test_inference_batch_single_identical() | |
def test_dict_tuple_outputs_equivalent(self): | |
return super().test_dict_tuple_outputs_equivalent() | |
def test_save_load_optional_components(self): | |
return super().test_save_load_optional_components() | |
def test_attention_slicing_forward_pass(self): | |
return super().test_attention_slicing_forward_pass() | |
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_cycle_diffusion_pipeline_fp16(self): | |
init_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/cycle-diffusion/black_colored_car.png" | |
) | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" | |
) | |
init_image = init_image.resize((512, 512)) | |
model_id = "CompVis/stable-diffusion-v1-4" | |
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler") | |
pipe = CycleDiffusionPipeline.from_pretrained( | |
model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16" | |
) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
source_prompt = "A black colored car" | |
prompt = "A blue colored car" | |
generator = torch.manual_seed(0) | |
output = pipe( | |
prompt=prompt, | |
source_prompt=source_prompt, | |
image=init_image, | |
num_inference_steps=100, | |
eta=0.1, | |
strength=0.85, | |
guidance_scale=3, | |
source_guidance_scale=1, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images | |
# the values aren't exactly equal, but the images look the same visually | |
assert np.abs(image - expected_image).max() < 5e-1 | |
def test_cycle_diffusion_pipeline(self): | |
init_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/cycle-diffusion/black_colored_car.png" | |
) | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" | |
) | |
init_image = init_image.resize((512, 512)) | |
model_id = "CompVis/stable-diffusion-v1-4" | |
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler") | |
pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
source_prompt = "A black colored car" | |
prompt = "A blue colored car" | |
generator = torch.manual_seed(0) | |
output = pipe( | |
prompt=prompt, | |
source_prompt=source_prompt, | |
image=init_image, | |
num_inference_steps=100, | |
eta=0.1, | |
strength=0.85, | |
guidance_scale=3, | |
source_guidance_scale=1, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images | |
assert np.abs(image - expected_image).max() < 1e-2 | |