Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
StableDiffusionImg2ImgPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device | |
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps | |
from ...pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS | |
from ...test_pipelines_common import PipelineTesterMixin | |
torch.backends.cuda.matmul.allow_tf32 = False | |
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = StableDiffusionImg2ImgPipeline | |
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} | |
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} | |
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0, input_image_type="pt", output_type="np"): | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
if input_image_type == "pt": | |
input_image = image | |
elif input_image_type == "np": | |
input_image = image.cpu().numpy().transpose(0, 2, 3, 1) | |
elif input_image_type == "pil": | |
input_image = image.cpu().numpy().transpose(0, 2, 3, 1) | |
input_image = VaeImageProcessor.numpy_to_pil(input_image) | |
else: | |
raise ValueError(f"unsupported input_image_type {input_image_type}.") | |
if output_type not in ["pt", "np", "pil"]: | |
raise ValueError(f"unsupported output_type {output_type}") | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": input_image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": output_type, | |
} | |
return inputs | |
def test_stable_diffusion_img2img_default_case(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionImg2ImgPipeline(**components) | |
sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=False) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_stable_diffusion_img2img_negative_prompt(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionImg2ImgPipeline(**components) | |
sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=False) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
negative_prompt = "french fries" | |
output = sd_pipe(**inputs, negative_prompt=negative_prompt) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_stable_diffusion_img2img_multiple_init_images(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionImg2ImgPipeline(**components) | |
sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=False) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["prompt"] = [inputs["prompt"]] * 2 | |
inputs["image"] = inputs["image"].repeat(2, 1, 1, 1) | |
image = sd_pipe(**inputs).images | |
image_slice = image[-1, -3:, -3:, -1] | |
assert image.shape == (2, 32, 32, 3) | |
expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_stable_diffusion_img2img_k_lms(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
components["scheduler"] = LMSDiscreteScheduler( | |
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | |
) | |
sd_pipe = StableDiffusionImg2ImgPipeline(**components) | |
sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=False) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_save_load_local(self): | |
return super().test_save_load_local() | |
def test_dict_tuple_outputs_equivalent(self): | |
return super().test_dict_tuple_outputs_equivalent() | |
def test_save_load_optional_components(self): | |
return super().test_save_load_optional_components() | |
def test_attention_slicing_forward_pass(self): | |
return super().test_attention_slicing_forward_pass() | |
def test_pt_np_pil_outputs_equivalent(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionImg2ImgPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
output_pt = sd_pipe(**self.get_dummy_inputs(device, output_type="pt"))[0] | |
output_np = sd_pipe(**self.get_dummy_inputs(device, output_type="np"))[0] | |
output_pil = sd_pipe(**self.get_dummy_inputs(device, output_type="pil"))[0] | |
assert np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max() <= 1e-4 | |
assert np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max() <= 1e-4 | |
def test_image_types_consistent(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionImg2ImgPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
output_pt = sd_pipe(**self.get_dummy_inputs(device, input_image_type="pt"))[0] | |
output_np = sd_pipe(**self.get_dummy_inputs(device, input_image_type="np"))[0] | |
output_pil = sd_pipe(**self.get_dummy_inputs(device, input_image_type="pil"))[0] | |
assert np.abs(output_pt - output_np).max() <= 1e-4 | |
assert np.abs(output_pil - output_np).max() <= 1e-2 | |
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
init_image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_img2img/sketch-mountains-input.png" | |
) | |
inputs = { | |
"prompt": "a fantasy landscape, concept art, high resolution", | |
"image": init_image, | |
"generator": generator, | |
"num_inference_steps": 3, | |
"strength": 0.75, | |
"guidance_scale": 7.5, | |
"output_type": "np", | |
} | |
return inputs | |
def test_stable_diffusion_img2img_default(self): | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
assert image.shape == (1, 512, 768, 3) | |
expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923]) | |
assert np.abs(expected_slice - image_slice).max() < 1e-3 | |
def test_stable_diffusion_img2img_k_lms(self): | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) | |
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
assert image.shape == (1, 512, 768, 3) | |
expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271]) | |
assert np.abs(expected_slice - image_slice).max() < 1e-3 | |
def test_stable_diffusion_img2img_ddim(self): | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
assert image.shape == (1, 512, 768, 3) | |
expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781]) | |
assert np.abs(expected_slice - image_slice).max() < 1e-3 | |
def test_stable_diffusion_img2img_intermediate_state(self): | |
number_of_steps = 0 | |
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: | |
callback_fn.has_been_called = True | |
nonlocal number_of_steps | |
number_of_steps += 1 | |
if step == 1: | |
latents = latents.detach().cpu().numpy() | |
assert latents.shape == (1, 4, 64, 96) | |
latents_slice = latents[0, -3:, -3:, -1] | |
expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523]) | |
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 | |
elif step == 2: | |
latents = latents.detach().cpu().numpy() | |
assert latents.shape == (1, 4, 64, 96) | |
latents_slice = latents[0, -3:, -3:, -1] | |
expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367]) | |
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 | |
callback_fn.has_been_called = False | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 | |
) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs(torch_device, dtype=torch.float16) | |
pipe(**inputs, callback=callback_fn, callback_steps=1) | |
assert callback_fn.has_been_called | |
assert number_of_steps == 2 | |
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 | |
) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing(1) | |
pipe.enable_sequential_cpu_offload() | |
inputs = self.get_inputs(torch_device, dtype=torch.float16) | |
_ = pipe(**inputs) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
# make sure that less than 2.2 GB is allocated | |
assert mem_bytes < 2.2 * 10**9 | |
def test_stable_diffusion_pipeline_with_model_offloading(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
inputs = self.get_inputs(torch_device, dtype=torch.float16) | |
# Normal inference | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe(**inputs) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
# With model offloading | |
# Reload but don't move to cuda | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
) | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
_ = pipe(**inputs) | |
mem_bytes_offloaded = torch.cuda.max_memory_allocated() | |
assert mem_bytes_offloaded < mem_bytes | |
for module in pipe.text_encoder, pipe.unet, pipe.vae: | |
assert module.device == torch.device("cpu") | |
def test_stable_diffusion_img2img_pipeline_multiple_of_8(self): | |
init_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/img2img/sketch-mountains-input.jpg" | |
) | |
# resize to resolution that is divisible by 8 but not 16 or 32 | |
init_image = init_image.resize((760, 504)) | |
model_id = "CompVis/stable-diffusion-v1-4" | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
model_id, | |
safety_checker=None, | |
) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
prompt = "A fantasy landscape, trending on artstation" | |
generator = torch.manual_seed(0) | |
output = pipe( | |
prompt=prompt, | |
image=init_image, | |
strength=0.75, | |
guidance_scale=7.5, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images[0] | |
image_slice = image[255:258, 383:386, -1] | |
assert image.shape == (504, 760, 3) | |
expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 | |
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
init_image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_img2img/sketch-mountains-input.png" | |
) | |
inputs = { | |
"prompt": "a fantasy landscape, concept art, high resolution", | |
"image": init_image, | |
"generator": generator, | |
"num_inference_steps": 50, | |
"strength": 0.75, | |
"guidance_scale": 7.5, | |
"output_type": "np", | |
} | |
return inputs | |
def test_img2img_pndm(self): | |
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
image = sd_pipe(**inputs).images[0] | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy" | |
) | |
max_diff = np.abs(expected_image - image).max() | |
assert max_diff < 1e-3 | |
def test_img2img_ddim(self): | |
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
image = sd_pipe(**inputs).images[0] | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy" | |
) | |
max_diff = np.abs(expected_image - image).max() | |
assert max_diff < 1e-3 | |
def test_img2img_lms(self): | |
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
image = sd_pipe(**inputs).images[0] | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy" | |
) | |
max_diff = np.abs(expected_image - image).max() | |
assert max_diff < 1e-3 | |
def test_img2img_dpm(self): | |
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
inputs["num_inference_steps"] = 30 | |
image = sd_pipe(**inputs).images[0] | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy" | |
) | |
max_diff = np.abs(expected_image - image).max() | |
assert max_diff < 1e-3 | |