Spaces:
Running
on
Zero
Running
on
Zero
""" | |
modeled after the textual_inversion.py / train_dreambooth.py and the work | |
of justinpinkney here: https://github.com/justinpinkney/stable-diffusion/blob/main/notebooks/imagic.ipynb | |
""" | |
import inspect | |
import warnings | |
from typing import List, Optional, Union | |
import numpy as np | |
import PIL | |
import torch | |
import torch.nn.functional as F | |
from accelerate import Accelerator | |
# TODO: remove and import from diffusers.utils when the new version of diffusers is released | |
from packaging import version | |
from tqdm.auto import tqdm | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
from diffusers import DiffusionPipeline | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler | |
from diffusers.utils import logging | |
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): | |
PIL_INTERPOLATION = { | |
"linear": PIL.Image.Resampling.BILINEAR, | |
"bilinear": PIL.Image.Resampling.BILINEAR, | |
"bicubic": PIL.Image.Resampling.BICUBIC, | |
"lanczos": PIL.Image.Resampling.LANCZOS, | |
"nearest": PIL.Image.Resampling.NEAREST, | |
} | |
else: | |
PIL_INTERPOLATION = { | |
"linear": PIL.Image.LINEAR, | |
"bilinear": PIL.Image.BILINEAR, | |
"bicubic": PIL.Image.BICUBIC, | |
"lanczos": PIL.Image.LANCZOS, | |
"nearest": PIL.Image.NEAREST, | |
} | |
# ------------------------------------------------------------------------------ | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def preprocess(image): | |
w, h = image.size | |
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 | |
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return 2.0 * image - 1.0 | |
class ImagicStableDiffusionPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for imagic image editing. | |
See paper here: https://arxiv.org/pdf/2210.09276.pdf | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offsensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. | |
feature_extractor ([`CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, | |
`attention_head_dim` must be a multiple of `slice_size`. | |
""" | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = self.unet.config.attention_head_dim // 2 | |
self.unet.set_attention_slice(slice_size) | |
def disable_attention_slicing(self): | |
r""" | |
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go | |
back to computing attention in one step. | |
""" | |
# set slice_size = `None` to disable `attention slicing` | |
self.enable_attention_slicing(None) | |
def train( | |
self, | |
prompt: Union[str, List[str]], | |
image: Union[torch.FloatTensor, PIL.Image.Image], | |
height: Optional[int] = 512, | |
width: Optional[int] = 512, | |
generator: Optional[torch.Generator] = None, | |
embedding_learning_rate: float = 0.001, | |
diffusion_model_learning_rate: float = 2e-6, | |
text_embedding_optimization_steps: int = 500, | |
model_fine_tuning_optimization_steps: int = 1000, | |
**kwargs, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
accelerator = Accelerator( | |
gradient_accumulation_steps=1, | |
mixed_precision="fp16", | |
) | |
if "torch_device" in kwargs: | |
device = kwargs.pop("torch_device") | |
warnings.warn( | |
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0." | |
" Consider using `pipe.to(torch_device)` instead." | |
) | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.to(device) | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
# Freeze vae and unet | |
self.vae.requires_grad_(False) | |
self.unet.requires_grad_(False) | |
self.text_encoder.requires_grad_(False) | |
self.unet.eval() | |
self.vae.eval() | |
self.text_encoder.eval() | |
if accelerator.is_main_process: | |
accelerator.init_trackers( | |
"imagic", | |
config={ | |
"embedding_learning_rate": embedding_learning_rate, | |
"text_embedding_optimization_steps": text_embedding_optimization_steps, | |
}, | |
) | |
# get text embeddings for prompt | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = torch.nn.Parameter( | |
self.text_encoder(text_input.input_ids.to(self.device))[0], requires_grad=True | |
) | |
text_embeddings = text_embeddings.detach() | |
text_embeddings.requires_grad_() | |
text_embeddings_orig = text_embeddings.clone() | |
# Initialize the optimizer | |
optimizer = torch.optim.Adam( | |
[text_embeddings], # only optimize the embeddings | |
lr=embedding_learning_rate, | |
) | |
if isinstance(image, PIL.Image.Image): | |
image = preprocess(image) | |
latents_dtype = text_embeddings.dtype | |
image = image.to(device=self.device, dtype=latents_dtype) | |
init_latent_image_dist = self.vae.encode(image).latent_dist | |
image_latents = init_latent_image_dist.sample(generator=generator) | |
image_latents = 0.18215 * image_latents | |
progress_bar = tqdm(range(text_embedding_optimization_steps), disable=not accelerator.is_local_main_process) | |
progress_bar.set_description("Steps") | |
global_step = 0 | |
logger.info("First optimizing the text embedding to better reconstruct the init image") | |
for _ in range(text_embedding_optimization_steps): | |
with accelerator.accumulate(text_embeddings): | |
# Sample noise that we'll add to the latents | |
noise = torch.randn(image_latents.shape).to(image_latents.device) | |
timesteps = torch.randint(1000, (1,), device=image_latents.device) | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps) | |
# Predict the noise residual | |
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample | |
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | |
accelerator.backward(loss) | |
optimizer.step() | |
optimizer.zero_grad() | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
accelerator.wait_for_everyone() | |
text_embeddings.requires_grad_(False) | |
# Now we fine tune the unet to better reconstruct the image | |
self.unet.requires_grad_(True) | |
self.unet.train() | |
optimizer = torch.optim.Adam( | |
self.unet.parameters(), # only optimize unet | |
lr=diffusion_model_learning_rate, | |
) | |
progress_bar = tqdm(range(model_fine_tuning_optimization_steps), disable=not accelerator.is_local_main_process) | |
logger.info("Next fine tuning the entire model to better reconstruct the init image") | |
for _ in range(model_fine_tuning_optimization_steps): | |
with accelerator.accumulate(self.unet.parameters()): | |
# Sample noise that we'll add to the latents | |
noise = torch.randn(image_latents.shape).to(image_latents.device) | |
timesteps = torch.randint(1000, (1,), device=image_latents.device) | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps) | |
# Predict the noise residual | |
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample | |
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() | |
accelerator.backward(loss) | |
optimizer.step() | |
optimizer.zero_grad() | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
accelerator.wait_for_everyone() | |
self.text_embeddings_orig = text_embeddings_orig | |
self.text_embeddings = text_embeddings | |
def __call__( | |
self, | |
alpha: float = 1.2, | |
height: Optional[int] = 512, | |
width: Optional[int] = 512, | |
num_inference_steps: Optional[int] = 50, | |
generator: Optional[torch.Generator] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
guidance_scale: float = 7.5, | |
eta: float = 0.0, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if self.text_embeddings is None: | |
raise ValueError("Please run the pipe.train() before trying to generate an image.") | |
if self.text_embeddings_orig is None: | |
raise ValueError("Please run the pipe.train() before trying to generate an image.") | |
text_embeddings = alpha * self.text_embeddings_orig + (1 - alpha) * self.text_embeddings | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens = [""] | |
max_length = self.tokenizer.model_max_length | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
uncond_embeddings = uncond_embeddings.view(1, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# get the initial random noise unless the user supplied it | |
# Unlike in other pipelines, latents need to be generated in the target device | |
# for 1-to-1 results reproducibility with the CompVis implementation. | |
# However this currently doesn't work in `mps`. | |
latents_shape = (1, self.unet.in_channels, height // 8, width // 8) | |
latents_dtype = text_embeddings.dtype | |
if self.device.type == "mps": | |
# randn does not exist on mps | |
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( | |
self.device | |
) | |
else: | |
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) | |
# set timesteps | |
self.scheduler.set_timesteps(num_inference_steps) | |
# Some schedulers like PNDM have timesteps as arrays | |
# It's more optimized to move all timesteps to correct device beforehand | |
timesteps_tensor = self.scheduler.timesteps.to(self.device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
for i, t in enumerate(self.progress_bar(timesteps_tensor)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
if self.safety_checker is not None: | |
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to( | |
self.device | |
) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype) | |
) | |
else: | |
has_nsfw_concept = None | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |