Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Callable, Dict, List, Optional, Union | |
import PIL.Image | |
import torch | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
DiffusionPipeline, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
StableDiffusionImg2ImgPipeline, | |
StableDiffusionInpaintPipelineLegacy, | |
StableDiffusionPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from diffusers.utils import deprecate, logging | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class StableDiffusionMegaPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionMegaSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
feature_extractor ([`CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
_optional_components = ["safety_checker", "feature_extractor"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
" file" | |
) | |
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["steps_offset"] = 1 | |
scheduler._internal_dict = FrozenDict(new_config) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
def components(self) -> Dict[str, Any]: | |
return {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")} | |
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, | |
`attention_head_dim` must be a multiple of `slice_size`. | |
""" | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = self.unet.config.attention_head_dim // 2 | |
self.unet.set_attention_slice(slice_size) | |
def disable_attention_slicing(self): | |
r""" | |
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go | |
back to computing attention in one step. | |
""" | |
# set slice_size = `None` to disable `attention slicing` | |
self.enable_attention_slicing(None) | |
def inpaint( | |
self, | |
prompt: Union[str, List[str]], | |
image: Union[torch.FloatTensor, PIL.Image.Image], | |
mask_image: Union[torch.FloatTensor, PIL.Image.Image], | |
strength: float = 0.8, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: Optional[float] = 0.0, | |
generator: Optional[torch.Generator] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
): | |
# For more information on how this function works, please see: https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionImg2ImgPipeline | |
return StableDiffusionInpaintPipelineLegacy(**self.components)( | |
prompt=prompt, | |
image=image, | |
mask_image=mask_image, | |
strength=strength, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
eta=eta, | |
generator=generator, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback=callback, | |
) | |
def img2img( | |
self, | |
prompt: Union[str, List[str]], | |
image: Union[torch.FloatTensor, PIL.Image.Image], | |
strength: float = 0.8, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: Optional[float] = 0.0, | |
generator: Optional[torch.Generator] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
**kwargs, | |
): | |
# For more information on how this function works, please see: https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionImg2ImgPipeline | |
return StableDiffusionImg2ImgPipeline(**self.components)( | |
prompt=prompt, | |
image=image, | |
strength=strength, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
eta=eta, | |
generator=generator, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback=callback, | |
callback_steps=callback_steps, | |
) | |
def text2img( | |
self, | |
prompt: Union[str, List[str]], | |
height: int = 512, | |
width: int = 512, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
): | |
# For more information on how this function https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionPipeline | |
return StableDiffusionPipeline(**self.components)( | |
prompt=prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
eta=eta, | |
generator=generator, | |
latents=latents, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback=callback, | |
callback_steps=callback_steps, | |
) | |