Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from torch.nn import functional as F | |
from transformers import CLIPTextModelWithProjection, CLIPTokenizer | |
from transformers.models.clip.modeling_clip import CLIPTextModelOutput | |
from diffusers import ( | |
DiffusionPipeline, | |
ImagePipelineOutput, | |
PriorTransformer, | |
UnCLIPScheduler, | |
UNet2DConditionModel, | |
UNet2DModel, | |
) | |
from diffusers.pipelines.unclip import UnCLIPTextProjModel | |
from diffusers.utils import is_accelerate_available, logging, randn_tensor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def slerp(val, low, high): | |
""" | |
Find the interpolation point between the 'low' and 'high' values for the given 'val'. See https://en.wikipedia.org/wiki/Slerp for more details on the topic. | |
""" | |
low_norm = low / torch.norm(low) | |
high_norm = high / torch.norm(high) | |
omega = torch.acos((low_norm * high_norm)) | |
so = torch.sin(omega) | |
res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high | |
return res | |
class UnCLIPTextInterpolationPipeline(DiffusionPipeline): | |
""" | |
Pipeline for prompt-to-prompt interpolation on CLIP text embeddings and using the UnCLIP / Dall-E to decode them to images. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
text_encoder ([`CLIPTextModelWithProjection`]): | |
Frozen text-encoder. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
prior ([`PriorTransformer`]): | |
The canonincal unCLIP prior to approximate the image embedding from the text embedding. | |
text_proj ([`UnCLIPTextProjModel`]): | |
Utility class to prepare and combine the embeddings before they are passed to the decoder. | |
decoder ([`UNet2DConditionModel`]): | |
The decoder to invert the image embedding into an image. | |
super_res_first ([`UNet2DModel`]): | |
Super resolution unet. Used in all but the last step of the super resolution diffusion process. | |
super_res_last ([`UNet2DModel`]): | |
Super resolution unet. Used in the last step of the super resolution diffusion process. | |
prior_scheduler ([`UnCLIPScheduler`]): | |
Scheduler used in the prior denoising process. Just a modified DDPMScheduler. | |
decoder_scheduler ([`UnCLIPScheduler`]): | |
Scheduler used in the decoder denoising process. Just a modified DDPMScheduler. | |
super_res_scheduler ([`UnCLIPScheduler`]): | |
Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler. | |
""" | |
prior: PriorTransformer | |
decoder: UNet2DConditionModel | |
text_proj: UnCLIPTextProjModel | |
text_encoder: CLIPTextModelWithProjection | |
tokenizer: CLIPTokenizer | |
super_res_first: UNet2DModel | |
super_res_last: UNet2DModel | |
prior_scheduler: UnCLIPScheduler | |
decoder_scheduler: UnCLIPScheduler | |
super_res_scheduler: UnCLIPScheduler | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.__init__ | |
def __init__( | |
self, | |
prior: PriorTransformer, | |
decoder: UNet2DConditionModel, | |
text_encoder: CLIPTextModelWithProjection, | |
tokenizer: CLIPTokenizer, | |
text_proj: UnCLIPTextProjModel, | |
super_res_first: UNet2DModel, | |
super_res_last: UNet2DModel, | |
prior_scheduler: UnCLIPScheduler, | |
decoder_scheduler: UnCLIPScheduler, | |
super_res_scheduler: UnCLIPScheduler, | |
): | |
super().__init__() | |
self.register_modules( | |
prior=prior, | |
decoder=decoder, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_proj=text_proj, | |
super_res_first=super_res_first, | |
super_res_last=super_res_last, | |
prior_scheduler=prior_scheduler, | |
decoder_scheduler=decoder_scheduler, | |
super_res_scheduler=super_res_scheduler, | |
) | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
latents = latents * scheduler.init_noise_sigma | |
return latents | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, | |
text_attention_mask: Optional[torch.Tensor] = None, | |
): | |
if text_model_output is None: | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
# get prompt text embeddings | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
text_mask = text_inputs.attention_mask.bool().to(device) | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | |
text_encoder_output = self.text_encoder(text_input_ids.to(device)) | |
prompt_embeds = text_encoder_output.text_embeds | |
text_encoder_hidden_states = text_encoder_output.last_hidden_state | |
else: | |
batch_size = text_model_output[0].shape[0] | |
prompt_embeds, text_encoder_hidden_states = text_model_output[0], text_model_output[1] | |
text_mask = text_attention_mask | |
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
if do_classifier_free_guidance: | |
uncond_tokens = [""] * batch_size | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
uncond_text_mask = uncond_input.attention_mask.bool().to(device) | |
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) | |
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds | |
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) | |
seq_len = uncond_text_encoder_hidden_states.shape[1] | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
# done duplicates | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) | |
text_mask = torch.cat([uncond_text_mask, text_mask]) | |
return prompt_embeds, text_encoder_hidden_states, text_mask | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.enable_sequential_cpu_offload | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's | |
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only | |
when their specific submodule has its `forward` method called. | |
""" | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
# TODO: self.prior.post_process_latents is not covered by the offload hooks, so it fails if added to the list | |
models = [ | |
self.decoder, | |
self.text_proj, | |
self.text_encoder, | |
self.super_res_first, | |
self.super_res_last, | |
] | |
for cpu_offloaded_model in models: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._execution_device | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"): | |
return self.device | |
for module in self.decoder.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def __call__( | |
self, | |
start_prompt: str, | |
end_prompt: str, | |
steps: int = 5, | |
prior_num_inference_steps: int = 25, | |
decoder_num_inference_steps: int = 25, | |
super_res_num_inference_steps: int = 7, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
prior_guidance_scale: float = 4.0, | |
decoder_guidance_scale: float = 8.0, | |
enable_sequential_cpu_offload=True, | |
gpu_id=0, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
start_prompt (`str`): | |
The prompt to start the image generation interpolation from. | |
end_prompt (`str`): | |
The prompt to end the image generation interpolation at. | |
steps (`int`, *optional*, defaults to 5): | |
The number of steps over which to interpolate from start_prompt to end_prompt. The pipeline returns | |
the same number of images as this value. | |
prior_num_inference_steps (`int`, *optional*, defaults to 25): | |
The number of denoising steps for the prior. More denoising steps usually lead to a higher quality | |
image at the expense of slower inference. | |
decoder_num_inference_steps (`int`, *optional*, defaults to 25): | |
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality | |
image at the expense of slower inference. | |
super_res_num_inference_steps (`int`, *optional*, defaults to 7): | |
The number of denoising steps for super resolution. More denoising steps usually lead to a higher | |
quality image at the expense of slower inference. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
prior_guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
decoder_guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
enable_sequential_cpu_offload (`bool`, *optional*, defaults to `True`): | |
If True, offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's | |
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only | |
when their specific submodule has its `forward` method called. | |
gpu_id (`int`, *optional*, defaults to `0`): | |
The gpu_id to be passed to enable_sequential_cpu_offload. Only works when enable_sequential_cpu_offload is set to True. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
""" | |
if not isinstance(start_prompt, str) or not isinstance(end_prompt, str): | |
raise ValueError( | |
f"`start_prompt` and `end_prompt` should be of type `str` but got {type(start_prompt)} and" | |
f" {type(end_prompt)} instead" | |
) | |
if enable_sequential_cpu_offload: | |
self.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
device = self._execution_device | |
# Turn the prompts into embeddings. | |
inputs = self.tokenizer( | |
[start_prompt, end_prompt], | |
padding="max_length", | |
truncation=True, | |
max_length=self.tokenizer.model_max_length, | |
return_tensors="pt", | |
) | |
inputs.to(device) | |
text_model_output = self.text_encoder(**inputs) | |
text_attention_mask = torch.max(inputs.attention_mask[0], inputs.attention_mask[1]) | |
text_attention_mask = torch.cat([text_attention_mask.unsqueeze(0)] * steps).to(device) | |
# Interpolate from the start to end prompt using slerp and add the generated images to an image output pipeline | |
batch_text_embeds = [] | |
batch_last_hidden_state = [] | |
for interp_val in torch.linspace(0, 1, steps): | |
text_embeds = slerp(interp_val, text_model_output.text_embeds[0], text_model_output.text_embeds[1]) | |
last_hidden_state = slerp( | |
interp_val, text_model_output.last_hidden_state[0], text_model_output.last_hidden_state[1] | |
) | |
batch_text_embeds.append(text_embeds.unsqueeze(0)) | |
batch_last_hidden_state.append(last_hidden_state.unsqueeze(0)) | |
batch_text_embeds = torch.cat(batch_text_embeds) | |
batch_last_hidden_state = torch.cat(batch_last_hidden_state) | |
text_model_output = CLIPTextModelOutput( | |
text_embeds=batch_text_embeds, last_hidden_state=batch_last_hidden_state | |
) | |
batch_size = text_model_output[0].shape[0] | |
do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0 | |
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( | |
prompt=None, | |
device=device, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
text_model_output=text_model_output, | |
text_attention_mask=text_attention_mask, | |
) | |
# prior | |
self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) | |
prior_timesteps_tensor = self.prior_scheduler.timesteps | |
embedding_dim = self.prior.config.embedding_dim | |
prior_latents = self.prepare_latents( | |
(batch_size, embedding_dim), | |
prompt_embeds.dtype, | |
device, | |
generator, | |
None, | |
self.prior_scheduler, | |
) | |
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents | |
predicted_image_embedding = self.prior( | |
latent_model_input, | |
timestep=t, | |
proj_embedding=prompt_embeds, | |
encoder_hidden_states=text_encoder_hidden_states, | |
attention_mask=text_mask, | |
).predicted_image_embedding | |
if do_classifier_free_guidance: | |
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) | |
predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * ( | |
predicted_image_embedding_text - predicted_image_embedding_uncond | |
) | |
if i + 1 == prior_timesteps_tensor.shape[0]: | |
prev_timestep = None | |
else: | |
prev_timestep = prior_timesteps_tensor[i + 1] | |
prior_latents = self.prior_scheduler.step( | |
predicted_image_embedding, | |
timestep=t, | |
sample=prior_latents, | |
generator=generator, | |
prev_timestep=prev_timestep, | |
).prev_sample | |
prior_latents = self.prior.post_process_latents(prior_latents) | |
image_embeddings = prior_latents | |
# done prior | |
# decoder | |
text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( | |
image_embeddings=image_embeddings, | |
prompt_embeds=prompt_embeds, | |
text_encoder_hidden_states=text_encoder_hidden_states, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
if device.type == "mps": | |
# HACK: MPS: There is a panic when padding bool tensors, | |
# so cast to int tensor for the pad and back to bool afterwards | |
text_mask = text_mask.type(torch.int) | |
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) | |
decoder_text_mask = decoder_text_mask.type(torch.bool) | |
else: | |
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) | |
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) | |
decoder_timesteps_tensor = self.decoder_scheduler.timesteps | |
num_channels_latents = self.decoder.in_channels | |
height = self.decoder.sample_size | |
width = self.decoder.sample_size | |
decoder_latents = self.prepare_latents( | |
(batch_size, num_channels_latents, height, width), | |
text_encoder_hidden_states.dtype, | |
device, | |
generator, | |
None, | |
self.decoder_scheduler, | |
) | |
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents | |
noise_pred = self.decoder( | |
sample=latent_model_input, | |
timestep=t, | |
encoder_hidden_states=text_encoder_hidden_states, | |
class_labels=additive_clip_time_embeddings, | |
attention_mask=decoder_text_mask, | |
).sample | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) | |
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) | |
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) | |
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) | |
if i + 1 == decoder_timesteps_tensor.shape[0]: | |
prev_timestep = None | |
else: | |
prev_timestep = decoder_timesteps_tensor[i + 1] | |
# compute the previous noisy sample x_t -> x_t-1 | |
decoder_latents = self.decoder_scheduler.step( | |
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator | |
).prev_sample | |
decoder_latents = decoder_latents.clamp(-1, 1) | |
image_small = decoder_latents | |
# done decoder | |
# super res | |
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) | |
super_res_timesteps_tensor = self.super_res_scheduler.timesteps | |
channels = self.super_res_first.in_channels // 2 | |
height = self.super_res_first.sample_size | |
width = self.super_res_first.sample_size | |
super_res_latents = self.prepare_latents( | |
(batch_size, channels, height, width), | |
image_small.dtype, | |
device, | |
generator, | |
None, | |
self.super_res_scheduler, | |
) | |
if device.type == "mps": | |
# MPS does not support many interpolations | |
image_upscaled = F.interpolate(image_small, size=[height, width]) | |
else: | |
interpolate_antialias = {} | |
if "antialias" in inspect.signature(F.interpolate).parameters: | |
interpolate_antialias["antialias"] = True | |
image_upscaled = F.interpolate( | |
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias | |
) | |
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): | |
# no classifier free guidance | |
if i == super_res_timesteps_tensor.shape[0] - 1: | |
unet = self.super_res_last | |
else: | |
unet = self.super_res_first | |
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) | |
noise_pred = unet( | |
sample=latent_model_input, | |
timestep=t, | |
).sample | |
if i + 1 == super_res_timesteps_tensor.shape[0]: | |
prev_timestep = None | |
else: | |
prev_timestep = super_res_timesteps_tensor[i + 1] | |
# compute the previous noisy sample x_t -> x_t-1 | |
super_res_latents = self.super_res_scheduler.step( | |
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator | |
).prev_sample | |
image = super_res_latents | |
# done super res | |
# post processing | |
image = image * 0.5 + 0.5 | |
image = image.clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |