Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import json | |
import os | |
import random | |
import shutil | |
import sys | |
import tempfile | |
import unittest | |
import unittest.mock as mock | |
import numpy as np | |
import PIL | |
import requests_mock | |
import safetensors.torch | |
import torch | |
from parameterized import parameterized | |
from PIL import Image | |
from requests.exceptions import HTTPError | |
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMPipeline, | |
DDIMScheduler, | |
DDPMPipeline, | |
DDPMScheduler, | |
DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
StableDiffusionImg2ImgPipeline, | |
StableDiffusionInpaintPipelineLegacy, | |
StableDiffusionPipeline, | |
UNet2DConditionModel, | |
UNet2DModel, | |
UniPCMultistepScheduler, | |
logging, | |
) | |
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME | |
from diffusers.utils import ( | |
CONFIG_NAME, | |
WEIGHTS_NAME, | |
floats_tensor, | |
is_flax_available, | |
nightly, | |
require_torch_2, | |
slow, | |
torch_device, | |
) | |
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, load_numpy, require_compel, require_torch_gpu | |
torch.backends.cuda.matmul.allow_tf32 = False | |
class DownloadTests(unittest.TestCase): | |
def test_one_request_upon_cached(self): | |
# TODO: For some reason this test fails on MPS where no HEAD call is made. | |
if torch_device == "mps": | |
return | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
with requests_mock.mock(real_http=True) as m: | |
DiffusionPipeline.download( | |
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname | |
) | |
download_requests = [r.method for r in m.request_history] | |
assert download_requests.count("HEAD") == 15, "15 calls to files" | |
assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json" | |
assert ( | |
len(download_requests) == 32 | |
), "2 calls per file (15 files) + send_telemetry, model_info and model_index.json" | |
with requests_mock.mock(real_http=True) as m: | |
DiffusionPipeline.download( | |
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname | |
) | |
cache_requests = [r.method for r in m.request_history] | |
assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD" | |
assert cache_requests.count("GET") == 1, "model info is only GET" | |
assert ( | |
len(cache_requests) == 2 | |
), "We should call only `model_info` to check for _commit hash and `send_telemetry`" | |
def test_download_only_pytorch(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
# pipeline has Flax weights | |
tmpdirname = DiffusionPipeline.download( | |
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname | |
) | |
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))] | |
files = [item for sublist in all_root_files for item in sublist] | |
# None of the downloaded files should be a flax file even if we have some here: | |
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack | |
assert not any(f.endswith(".msgpack") for f in files) | |
# We need to never convert this tiny model to safetensors for this test to pass | |
assert not any(f.endswith(".safetensors") for f in files) | |
def test_force_safetensors_error(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
# pipeline has Flax weights | |
with self.assertRaises(EnvironmentError): | |
tmpdirname = DiffusionPipeline.download( | |
"hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors", | |
safety_checker=None, | |
cache_dir=tmpdirname, | |
use_safetensors=True, | |
) | |
def test_returned_cached_folder(self): | |
prompt = "hello" | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None | |
) | |
_, local_path = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, return_cached_folder=True | |
) | |
pipe_2 = StableDiffusionPipeline.from_pretrained(local_path) | |
pipe = pipe.to(torch_device) | |
pipe_2 = pipe_2.to(torch_device) | |
generator = torch.manual_seed(0) | |
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images | |
generator = torch.manual_seed(0) | |
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images | |
assert np.max(np.abs(out - out_2)) < 1e-3 | |
def test_download_safetensors(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
# pipeline has Flax weights | |
tmpdirname = DiffusionPipeline.download( | |
"hf-internal-testing/tiny-stable-diffusion-pipe-safetensors", | |
safety_checker=None, | |
cache_dir=tmpdirname, | |
) | |
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))] | |
files = [item for sublist in all_root_files for item in sublist] | |
# None of the downloaded files should be a pytorch file even if we have some here: | |
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack | |
assert not any(f.endswith(".bin") for f in files) | |
def test_download_no_safety_checker(self): | |
prompt = "hello" | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None | |
) | |
pipe = pipe.to(torch_device) | |
generator = torch.manual_seed(0) | |
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images | |
pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch") | |
pipe_2 = pipe_2.to(torch_device) | |
generator = torch.manual_seed(0) | |
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images | |
assert np.max(np.abs(out - out_2)) < 1e-3 | |
def test_load_no_safety_checker_explicit_locally(self): | |
prompt = "hello" | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None | |
) | |
pipe = pipe.to(torch_device) | |
generator = torch.manual_seed(0) | |
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pipe.save_pretrained(tmpdirname) | |
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None) | |
pipe_2 = pipe_2.to(torch_device) | |
generator = torch.manual_seed(0) | |
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images | |
assert np.max(np.abs(out - out_2)) < 1e-3 | |
def test_load_no_safety_checker_default_locally(self): | |
prompt = "hello" | |
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch") | |
pipe = pipe.to(torch_device) | |
generator = torch.manual_seed(0) | |
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pipe.save_pretrained(tmpdirname) | |
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname) | |
pipe_2 = pipe_2.to(torch_device) | |
generator = torch.manual_seed(0) | |
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images | |
assert np.max(np.abs(out - out_2)) < 1e-3 | |
def test_cached_files_are_used_when_no_internet(self): | |
# A mock response for an HTTP head request to emulate server down | |
response_mock = mock.Mock() | |
response_mock.status_code = 500 | |
response_mock.headers = {} | |
response_mock.raise_for_status.side_effect = HTTPError | |
response_mock.json.return_value = {} | |
# Download this model to make sure it's in the cache. | |
orig_pipe = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None | |
) | |
orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")} | |
# Under the mock environment we get a 500 error when trying to reach the model. | |
with mock.patch("requests.request", return_value=response_mock): | |
# Download this model to make sure it's in the cache. | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, local_files_only=True | |
) | |
comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")} | |
for m1, m2 in zip(orig_comps.values(), comps.values()): | |
for p1, p2 in zip(m1.parameters(), m2.parameters()): | |
if p1.data.ne(p2.data).sum() > 0: | |
assert False, "Parameters not the same!" | |
def test_download_from_variant_folder(self): | |
for safe_avail in [False, True]: | |
import diffusers | |
diffusers.utils.import_utils._safetensors_available = safe_avail | |
other_format = ".bin" if safe_avail else ".safetensors" | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
tmpdirname = StableDiffusionPipeline.download( | |
"hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname | |
) | |
all_root_files = [t[-1] for t in os.walk(tmpdirname)] | |
files = [item for sublist in all_root_files for item in sublist] | |
# None of the downloaded files should be a variant file even if we have some here: | |
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet | |
assert len(files) == 15, f"We should only download 15 files, not {len(files)}" | |
assert not any(f.endswith(other_format) for f in files) | |
# no variants | |
assert not any(len(f.split(".")) == 3 for f in files) | |
diffusers.utils.import_utils._safetensors_available = True | |
def test_download_variant_all(self): | |
for safe_avail in [False, True]: | |
import diffusers | |
diffusers.utils.import_utils._safetensors_available = safe_avail | |
other_format = ".bin" if safe_avail else ".safetensors" | |
this_format = ".safetensors" if safe_avail else ".bin" | |
variant = "fp16" | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
tmpdirname = StableDiffusionPipeline.download( | |
"hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant | |
) | |
all_root_files = [t[-1] for t in os.walk(tmpdirname)] | |
files = [item for sublist in all_root_files for item in sublist] | |
# None of the downloaded files should be a non-variant file even if we have some here: | |
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet | |
assert len(files) == 15, f"We should only download 15 files, not {len(files)}" | |
# unet, vae, text_encoder, safety_checker | |
assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4 | |
# all checkpoints should have variant ending | |
assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) | |
assert not any(f.endswith(other_format) for f in files) | |
diffusers.utils.import_utils._safetensors_available = True | |
def test_download_variant_partly(self): | |
for safe_avail in [False, True]: | |
import diffusers | |
diffusers.utils.import_utils._safetensors_available = safe_avail | |
other_format = ".bin" if safe_avail else ".safetensors" | |
this_format = ".safetensors" if safe_avail else ".bin" | |
variant = "no_ema" | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
tmpdirname = StableDiffusionPipeline.download( | |
"hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant | |
) | |
all_root_files = [t[-1] for t in os.walk(tmpdirname)] | |
files = [item for sublist in all_root_files for item in sublist] | |
unet_files = os.listdir(os.path.join(tmpdirname, "unet")) | |
# Some of the downloaded files should be a non-variant file, check: | |
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet | |
assert len(files) == 15, f"We should only download 15 files, not {len(files)}" | |
# only unet has "no_ema" variant | |
assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files | |
assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1 | |
# vae, safety_checker and text_encoder should have no variant | |
assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3 | |
assert not any(f.endswith(other_format) for f in files) | |
diffusers.utils.import_utils._safetensors_available = True | |
def test_download_broken_variant(self): | |
for safe_avail in [False, True]: | |
import diffusers | |
diffusers.utils.import_utils._safetensors_available = safe_avail | |
# text encoder is missing no variant and "no_ema" variant weights, so the following can't work | |
for variant in [None, "no_ema"]: | |
with self.assertRaises(OSError) as error_context: | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
tmpdirname = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/stable-diffusion-broken-variants", | |
cache_dir=tmpdirname, | |
variant=variant, | |
) | |
assert "Error no file name" in str(error_context.exception) | |
# text encoder has fp16 variants so we can load it | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
tmpdirname = StableDiffusionPipeline.download( | |
"hf-internal-testing/stable-diffusion-broken-variants", cache_dir=tmpdirname, variant="fp16" | |
) | |
all_root_files = [t[-1] for t in os.walk(tmpdirname)] | |
files = [item for sublist in all_root_files for item in sublist] | |
# None of the downloaded files should be a non-variant file even if we have some here: | |
# https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet | |
assert len(files) == 15, f"We should only download 15 files, not {len(files)}" | |
# only unet has "no_ema" variant | |
diffusers.utils.import_utils._safetensors_available = True | |
def test_text_inversion_download(self): | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None | |
) | |
pipe = pipe.to(torch_device) | |
num_tokens = len(pipe.tokenizer) | |
# single token load local | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
ten = {"<*>": torch.ones((32,))} | |
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin")) | |
pipe.load_textual_inversion(tmpdirname) | |
token = pipe.tokenizer.convert_tokens_to_ids("<*>") | |
assert token == num_tokens, "Added token must be at spot `num_tokens`" | |
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32 | |
assert pipe._maybe_convert_prompt("<*>", pipe.tokenizer) == "<*>" | |
prompt = "hey <*>" | |
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images | |
assert out.shape == (1, 128, 128, 3) | |
# single token load local with weight name | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
ten = {"<**>": 2 * torch.ones((1, 32))} | |
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin")) | |
pipe.load_textual_inversion(tmpdirname, weight_name="learned_embeds.bin") | |
token = pipe.tokenizer.convert_tokens_to_ids("<**>") | |
assert token == num_tokens + 1, "Added token must be at spot `num_tokens`" | |
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64 | |
assert pipe._maybe_convert_prompt("<**>", pipe.tokenizer) == "<**>" | |
prompt = "hey <**>" | |
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images | |
assert out.shape == (1, 128, 128, 3) | |
# multi token load | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
ten = {"<***>": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])} | |
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin")) | |
pipe.load_textual_inversion(tmpdirname) | |
token = pipe.tokenizer.convert_tokens_to_ids("<***>") | |
token_1 = pipe.tokenizer.convert_tokens_to_ids("<***>_1") | |
token_2 = pipe.tokenizer.convert_tokens_to_ids("<***>_2") | |
assert token == num_tokens + 2, "Added token must be at spot `num_tokens`" | |
assert token_1 == num_tokens + 3, "Added token must be at spot `num_tokens`" | |
assert token_2 == num_tokens + 4, "Added token must be at spot `num_tokens`" | |
assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96 | |
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128 | |
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160 | |
assert pipe._maybe_convert_prompt("<***>", pipe.tokenizer) == "<***><***>_1<***>_2" | |
prompt = "hey <***>" | |
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images | |
assert out.shape == (1, 128, 128, 3) | |
# multi token load a1111 | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
ten = { | |
"string_to_param": { | |
"*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))]) | |
}, | |
"name": "<****>", | |
} | |
torch.save(ten, os.path.join(tmpdirname, "a1111.bin")) | |
pipe.load_textual_inversion(tmpdirname, weight_name="a1111.bin") | |
token = pipe.tokenizer.convert_tokens_to_ids("<****>") | |
token_1 = pipe.tokenizer.convert_tokens_to_ids("<****>_1") | |
token_2 = pipe.tokenizer.convert_tokens_to_ids("<****>_2") | |
assert token == num_tokens + 5, "Added token must be at spot `num_tokens`" | |
assert token_1 == num_tokens + 6, "Added token must be at spot `num_tokens`" | |
assert token_2 == num_tokens + 7, "Added token must be at spot `num_tokens`" | |
assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96 | |
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128 | |
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160 | |
assert pipe._maybe_convert_prompt("<****>", pipe.tokenizer) == "<****><****>_1<****>_2" | |
prompt = "hey <****>" | |
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images | |
assert out.shape == (1, 128, 128, 3) | |
class CustomPipelineTests(unittest.TestCase): | |
def test_load_custom_pipeline(self): | |
pipeline = DiffusionPipeline.from_pretrained( | |
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline" | |
) | |
pipeline = pipeline.to(torch_device) | |
# NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub | |
# under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24 | |
assert pipeline.__class__.__name__ == "CustomPipeline" | |
def test_load_custom_github(self): | |
pipeline = DiffusionPipeline.from_pretrained( | |
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main" | |
) | |
# make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690 | |
with torch.no_grad(): | |
output = pipeline() | |
assert output.numel() == output.sum() | |
# hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python | |
# Could in the future work with hashes instead. | |
del sys.modules["diffusers_modules.git.one_step_unet"] | |
pipeline = DiffusionPipeline.from_pretrained( | |
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2" | |
) | |
with torch.no_grad(): | |
output = pipeline() | |
assert output.numel() != output.sum() | |
assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline" | |
def test_run_custom_pipeline(self): | |
pipeline = DiffusionPipeline.from_pretrained( | |
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline" | |
) | |
pipeline = pipeline.to(torch_device) | |
images, output_str = pipeline(num_inference_steps=2, output_type="np") | |
assert images[0].shape == (1, 32, 32, 3) | |
# compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102 | |
assert output_str == "This is a test" | |
def test_local_custom_pipeline_repo(self): | |
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline") | |
pipeline = DiffusionPipeline.from_pretrained( | |
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path | |
) | |
pipeline = pipeline.to(torch_device) | |
images, output_str = pipeline(num_inference_steps=2, output_type="np") | |
assert pipeline.__class__.__name__ == "CustomLocalPipeline" | |
assert images[0].shape == (1, 32, 32, 3) | |
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102 | |
assert output_str == "This is a local test" | |
def test_local_custom_pipeline_file(self): | |
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline") | |
local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py") | |
pipeline = DiffusionPipeline.from_pretrained( | |
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path | |
) | |
pipeline = pipeline.to(torch_device) | |
images, output_str = pipeline(num_inference_steps=2, output_type="np") | |
assert pipeline.__class__.__name__ == "CustomLocalPipeline" | |
assert images[0].shape == (1, 32, 32, 3) | |
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102 | |
assert output_str == "This is a local test" | |
def test_download_from_git(self): | |
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K" | |
feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id) | |
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16) | |
pipeline = DiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
custom_pipeline="clip_guided_stable_diffusion", | |
clip_model=clip_model, | |
feature_extractor=feature_extractor, | |
torch_dtype=torch.float16, | |
) | |
pipeline.enable_attention_slicing() | |
pipeline = pipeline.to(torch_device) | |
# NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under: | |
# https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py | |
assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion" | |
image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0] | |
assert image.shape == (512, 512, 3) | |
class PipelineFastTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
import diffusers | |
diffusers.utils.import_utils._safetensors_available = True | |
def dummy_image(self): | |
batch_size = 1 | |
num_channels = 3 | |
sizes = (32, 32) | |
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) | |
return image | |
def dummy_uncond_unet(self, sample_size=32): | |
torch.manual_seed(0) | |
model = UNet2DModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=sample_size, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=("DownBlock2D", "AttnDownBlock2D"), | |
up_block_types=("AttnUpBlock2D", "UpBlock2D"), | |
) | |
return model | |
def dummy_cond_unet(self, sample_size=32): | |
torch.manual_seed(0) | |
model = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=sample_size, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
return model | |
def dummy_vae(self): | |
torch.manual_seed(0) | |
model = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
return model | |
def dummy_text_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
return CLIPTextModel(config) | |
def dummy_extractor(self): | |
def extract(*args, **kwargs): | |
class Out: | |
def __init__(self): | |
self.pixel_values = torch.ones([0]) | |
def to(self, device): | |
self.pixel_values.to(device) | |
return self | |
return Out() | |
return extract | |
def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32): | |
unet = self.dummy_uncond_unet(sample_size) | |
scheduler = scheduler_fn() | |
pipeline = pipeline_fn(unet, scheduler).to(torch_device) | |
generator = torch.manual_seed(0) | |
out_image = pipeline( | |
generator=generator, | |
num_inference_steps=2, | |
output_type="np", | |
).images | |
sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size | |
assert out_image.shape == (1, *sample_size, 3) | |
def test_stable_diffusion_components(self): | |
"""Test that components property works correctly""" | |
unet = self.dummy_cond_unet() | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
vae = self.dummy_vae | |
bert = self.dummy_text_encoder | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0] | |
init_image = Image.fromarray(np.uint8(image)).convert("RGB") | |
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32)) | |
# make sure here that pndm scheduler skips prk | |
inpaint = StableDiffusionInpaintPipelineLegacy( | |
unet=unet, | |
scheduler=scheduler, | |
vae=vae, | |
text_encoder=bert, | |
tokenizer=tokenizer, | |
safety_checker=None, | |
feature_extractor=self.dummy_extractor, | |
).to(torch_device) | |
img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device) | |
text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device) | |
prompt = "A painting of a squirrel eating a burger" | |
generator = torch.manual_seed(0) | |
image_inpaint = inpaint( | |
[prompt], | |
generator=generator, | |
num_inference_steps=2, | |
output_type="np", | |
image=init_image, | |
mask_image=mask_image, | |
).images | |
image_img2img = img2img( | |
[prompt], | |
generator=generator, | |
num_inference_steps=2, | |
output_type="np", | |
image=init_image, | |
).images | |
image_text2img = text2img( | |
[prompt], | |
generator=generator, | |
num_inference_steps=2, | |
output_type="np", | |
).images | |
assert image_inpaint.shape == (1, 32, 32, 3) | |
assert image_img2img.shape == (1, 32, 32, 3) | |
assert image_text2img.shape == (1, 64, 64, 3) | |
def test_pipe_false_offload_warn(self): | |
unet = self.dummy_cond_unet() | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
vae = self.dummy_vae | |
bert = self.dummy_text_encoder | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
sd = StableDiffusionPipeline( | |
unet=unet, | |
scheduler=scheduler, | |
vae=vae, | |
text_encoder=bert, | |
tokenizer=tokenizer, | |
safety_checker=None, | |
feature_extractor=self.dummy_extractor, | |
) | |
sd.enable_model_cpu_offload() | |
logger = logging.get_logger("diffusers.pipelines.pipeline_utils") | |
with CaptureLogger(logger) as cap_logger: | |
sd.to("cuda") | |
assert "It is strongly recommended against doing so" in str(cap_logger) | |
sd = StableDiffusionPipeline( | |
unet=unet, | |
scheduler=scheduler, | |
vae=vae, | |
text_encoder=bert, | |
tokenizer=tokenizer, | |
safety_checker=None, | |
feature_extractor=self.dummy_extractor, | |
) | |
def test_set_scheduler(self): | |
unet = self.dummy_cond_unet() | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
vae = self.dummy_vae | |
bert = self.dummy_text_encoder | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
sd = StableDiffusionPipeline( | |
unet=unet, | |
scheduler=scheduler, | |
vae=vae, | |
text_encoder=bert, | |
tokenizer=tokenizer, | |
safety_checker=None, | |
feature_extractor=self.dummy_extractor, | |
) | |
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config) | |
assert isinstance(sd.scheduler, DDIMScheduler) | |
sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config) | |
assert isinstance(sd.scheduler, DDPMScheduler) | |
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config) | |
assert isinstance(sd.scheduler, PNDMScheduler) | |
sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config) | |
assert isinstance(sd.scheduler, LMSDiscreteScheduler) | |
sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config) | |
assert isinstance(sd.scheduler, EulerDiscreteScheduler) | |
sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config) | |
assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler) | |
sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config) | |
assert isinstance(sd.scheduler, DPMSolverMultistepScheduler) | |
def test_set_scheduler_consistency(self): | |
unet = self.dummy_cond_unet() | |
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler") | |
ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler") | |
vae = self.dummy_vae | |
bert = self.dummy_text_encoder | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
sd = StableDiffusionPipeline( | |
unet=unet, | |
scheduler=pndm, | |
vae=vae, | |
text_encoder=bert, | |
tokenizer=tokenizer, | |
safety_checker=None, | |
feature_extractor=self.dummy_extractor, | |
) | |
pndm_config = sd.scheduler.config | |
sd.scheduler = DDPMScheduler.from_config(pndm_config) | |
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config) | |
pndm_config_2 = sd.scheduler.config | |
pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config} | |
assert dict(pndm_config) == dict(pndm_config_2) | |
sd = StableDiffusionPipeline( | |
unet=unet, | |
scheduler=ddim, | |
vae=vae, | |
text_encoder=bert, | |
tokenizer=tokenizer, | |
safety_checker=None, | |
feature_extractor=self.dummy_extractor, | |
) | |
ddim_config = sd.scheduler.config | |
sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config) | |
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config) | |
ddim_config_2 = sd.scheduler.config | |
ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config} | |
assert dict(ddim_config) == dict(ddim_config_2) | |
def test_save_safe_serialization(self): | |
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch") | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pipeline.save_pretrained(tmpdirname, safe_serialization=True) | |
# Validate that the VAE safetensor exists and are of the correct format | |
vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors") | |
assert os.path.exists(vae_path), f"Could not find {vae_path}" | |
_ = safetensors.torch.load_file(vae_path) | |
# Validate that the UNet safetensor exists and are of the correct format | |
unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors") | |
assert os.path.exists(unet_path), f"Could not find {unet_path}" | |
_ = safetensors.torch.load_file(unet_path) | |
# Validate that the text encoder safetensor exists and are of the correct format | |
text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors") | |
assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}" | |
_ = safetensors.torch.load_file(text_encoder_path) | |
pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname) | |
assert pipeline.unet is not None | |
assert pipeline.vae is not None | |
assert pipeline.text_encoder is not None | |
assert pipeline.scheduler is not None | |
assert pipeline.feature_extractor is not None | |
def test_no_pytorch_download_when_doing_safetensors(self): | |
# by default we don't download | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
_ = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname | |
) | |
path = os.path.join( | |
tmpdirname, | |
"models--hf-internal-testing--diffusers-stable-diffusion-tiny-all", | |
"snapshots", | |
"07838d72e12f9bcec1375b0482b80c1d399be843", | |
"unet", | |
) | |
# safetensors exists | |
assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors")) | |
# pytorch does not | |
assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin")) | |
def test_no_safetensors_download_when_doing_pytorch(self): | |
# mock diffusers safetensors not available | |
import diffusers | |
diffusers.utils.import_utils._safetensors_available = False | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
_ = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname | |
) | |
path = os.path.join( | |
tmpdirname, | |
"models--hf-internal-testing--diffusers-stable-diffusion-tiny-all", | |
"snapshots", | |
"07838d72e12f9bcec1375b0482b80c1d399be843", | |
"unet", | |
) | |
# safetensors does not exists | |
assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors")) | |
# pytorch does | |
assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin")) | |
diffusers.utils.import_utils._safetensors_available = True | |
def test_optional_components(self): | |
unet = self.dummy_cond_unet() | |
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler") | |
vae = self.dummy_vae | |
bert = self.dummy_text_encoder | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
orig_sd = StableDiffusionPipeline( | |
unet=unet, | |
scheduler=pndm, | |
vae=vae, | |
text_encoder=bert, | |
tokenizer=tokenizer, | |
safety_checker=unet, | |
feature_extractor=self.dummy_extractor, | |
) | |
sd = orig_sd | |
assert sd.config.requires_safety_checker is True | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
sd.save_pretrained(tmpdirname) | |
# Test that passing None works | |
sd = StableDiffusionPipeline.from_pretrained( | |
tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False | |
) | |
assert sd.config.requires_safety_checker is False | |
assert sd.config.safety_checker == (None, None) | |
assert sd.config.feature_extractor == (None, None) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
sd.save_pretrained(tmpdirname) | |
# Test that loading previous None works | |
sd = StableDiffusionPipeline.from_pretrained(tmpdirname) | |
assert sd.config.requires_safety_checker is False | |
assert sd.config.safety_checker == (None, None) | |
assert sd.config.feature_extractor == (None, None) | |
orig_sd.save_pretrained(tmpdirname) | |
# Test that loading without any directory works | |
shutil.rmtree(os.path.join(tmpdirname, "safety_checker")) | |
with open(os.path.join(tmpdirname, sd.config_name)) as f: | |
config = json.load(f) | |
config["safety_checker"] = [None, None] | |
with open(os.path.join(tmpdirname, sd.config_name), "w") as f: | |
json.dump(config, f) | |
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False) | |
sd.save_pretrained(tmpdirname) | |
sd = StableDiffusionPipeline.from_pretrained(tmpdirname) | |
assert sd.config.requires_safety_checker is False | |
assert sd.config.safety_checker == (None, None) | |
assert sd.config.feature_extractor == (None, None) | |
# Test that loading from deleted model index works | |
with open(os.path.join(tmpdirname, sd.config_name)) as f: | |
config = json.load(f) | |
del config["safety_checker"] | |
del config["feature_extractor"] | |
with open(os.path.join(tmpdirname, sd.config_name), "w") as f: | |
json.dump(config, f) | |
sd = StableDiffusionPipeline.from_pretrained(tmpdirname) | |
assert sd.config.requires_safety_checker is False | |
assert sd.config.safety_checker == (None, None) | |
assert sd.config.feature_extractor == (None, None) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
sd.save_pretrained(tmpdirname) | |
# Test that partially loading works | |
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor) | |
assert sd.config.requires_safety_checker is False | |
assert sd.config.safety_checker == (None, None) | |
assert sd.config.feature_extractor != (None, None) | |
# Test that partially loading works | |
sd = StableDiffusionPipeline.from_pretrained( | |
tmpdirname, | |
feature_extractor=self.dummy_extractor, | |
safety_checker=unet, | |
requires_safety_checker=[True, True], | |
) | |
assert sd.config.requires_safety_checker == [True, True] | |
assert sd.config.safety_checker != (None, None) | |
assert sd.config.feature_extractor != (None, None) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
sd.save_pretrained(tmpdirname) | |
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor) | |
assert sd.config.requires_safety_checker == [True, True] | |
assert sd.config.safety_checker != (None, None) | |
assert sd.config.feature_extractor != (None, None) | |
class PipelineSlowTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_smart_download(self): | |
model_id = "hf-internal-testing/unet-pipeline-dummy" | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
_ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True) | |
local_repo_name = "--".join(["models"] + model_id.split("/")) | |
snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots") | |
snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0]) | |
# inspect all downloaded files to make sure that everything is included | |
assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name)) | |
assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME)) | |
assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME)) | |
assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME)) | |
assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME)) | |
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME)) | |
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME)) | |
# let's make sure the super large numpy file: | |
# https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy | |
# is not downloaded, but all the expected ones | |
assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy")) | |
def test_warning_unused_kwargs(self): | |
model_id = "hf-internal-testing/unet-pipeline-dummy" | |
logger = logging.get_logger("diffusers.pipelines") | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
with CaptureLogger(logger) as cap_logger: | |
DiffusionPipeline.from_pretrained( | |
model_id, | |
not_used=True, | |
cache_dir=tmpdirname, | |
force_download=True, | |
) | |
assert ( | |
cap_logger.out.strip().split("\n")[-1] | |
== "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored." | |
) | |
def test_from_save_pretrained(self): | |
# 1. Load models | |
model = UNet2DModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=("DownBlock2D", "AttnDownBlock2D"), | |
up_block_types=("AttnUpBlock2D", "UpBlock2D"), | |
) | |
scheduler = DDPMScheduler(num_train_timesteps=10) | |
ddpm = DDPMPipeline(model, scheduler) | |
ddpm.to(torch_device) | |
ddpm.set_progress_bar_config(disable=None) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
ddpm.save_pretrained(tmpdirname) | |
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname) | |
new_ddpm.to(torch_device) | |
generator = torch.Generator(device=torch_device).manual_seed(0) | |
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images | |
generator = torch.Generator(device=torch_device).manual_seed(0) | |
new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images | |
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" | |
def test_from_save_pretrained_dynamo(self): | |
# 1. Load models | |
model = UNet2DModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=("DownBlock2D", "AttnDownBlock2D"), | |
up_block_types=("AttnUpBlock2D", "UpBlock2D"), | |
) | |
model = torch.compile(model) | |
scheduler = DDPMScheduler(num_train_timesteps=10) | |
ddpm = DDPMPipeline(model, scheduler) | |
ddpm.to(torch_device) | |
ddpm.set_progress_bar_config(disable=None) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
ddpm.save_pretrained(tmpdirname) | |
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname) | |
new_ddpm.to(torch_device) | |
generator = torch.Generator(device=torch_device).manual_seed(0) | |
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images | |
generator = torch.Generator(device=torch_device).manual_seed(0) | |
new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images | |
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" | |
def test_from_pretrained_hub(self): | |
model_path = "google/ddpm-cifar10-32" | |
scheduler = DDPMScheduler(num_train_timesteps=10) | |
ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler) | |
ddpm = ddpm.to(torch_device) | |
ddpm.set_progress_bar_config(disable=None) | |
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler) | |
ddpm_from_hub = ddpm_from_hub.to(torch_device) | |
ddpm_from_hub.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device=torch_device).manual_seed(0) | |
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images | |
generator = torch.Generator(device=torch_device).manual_seed(0) | |
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images | |
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" | |
def test_from_pretrained_hub_pass_model(self): | |
model_path = "google/ddpm-cifar10-32" | |
scheduler = DDPMScheduler(num_train_timesteps=10) | |
# pass unet into DiffusionPipeline | |
unet = UNet2DModel.from_pretrained(model_path) | |
ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler) | |
ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device) | |
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None) | |
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler) | |
ddpm_from_hub = ddpm_from_hub.to(torch_device) | |
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device=torch_device).manual_seed(0) | |
image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="numpy").images | |
generator = torch.Generator(device=torch_device).manual_seed(0) | |
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images | |
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass" | |
def test_output_format(self): | |
model_path = "google/ddpm-cifar10-32" | |
scheduler = DDIMScheduler.from_pretrained(model_path) | |
pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
images = pipe(output_type="numpy").images | |
assert images.shape == (1, 32, 32, 3) | |
assert isinstance(images, np.ndarray) | |
images = pipe(output_type="pil", num_inference_steps=4).images | |
assert isinstance(images, list) | |
assert len(images) == 1 | |
assert isinstance(images[0], PIL.Image.Image) | |
# use PIL by default | |
images = pipe(num_inference_steps=4).images | |
assert isinstance(images, list) | |
assert isinstance(images[0], PIL.Image.Image) | |
def test_from_flax_from_pt(self): | |
pipe_pt = StableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None | |
) | |
pipe_pt.to(torch_device) | |
if not is_flax_available(): | |
raise ImportError("Make sure flax is installed.") | |
from diffusers import FlaxStableDiffusionPipeline | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pipe_pt.save_pretrained(tmpdirname) | |
pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained( | |
tmpdirname, safety_checker=None, from_pt=True | |
) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pipe_flax.save_pretrained(tmpdirname, params=params) | |
pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True) | |
pipe_pt_2.to(torch_device) | |
prompt = "Hello" | |
generator = torch.manual_seed(0) | |
image_0 = pipe_pt( | |
[prompt], | |
generator=generator, | |
num_inference_steps=2, | |
output_type="np", | |
).images[0] | |
generator = torch.manual_seed(0) | |
image_1 = pipe_pt_2( | |
[prompt], | |
generator=generator, | |
num_inference_steps=2, | |
output_type="np", | |
).images[0] | |
assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass" | |
def test_weighted_prompts_compel(self): | |
from compel import Compel | |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_model_cpu_offload() | |
pipe.enable_attention_slicing() | |
compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder) | |
prompt = "a red cat playing with a ball{}" | |
prompts = [prompt.format(s) for s in ["", "++", "--"]] | |
prompt_embeds = compel(prompts) | |
generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])] | |
images = pipe( | |
prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="numpy" | |
).images | |
for i, image in enumerate(images): | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
f"/compel/forest_{i}.npy" | |
) | |
assert np.abs(image - expected_image).max() < 1e-2 | |
class PipelineNightlyTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_ddpm_ddim_equality_batched(self): | |
seed = 0 | |
model_id = "google/ddpm-cifar10-32" | |
unet = UNet2DModel.from_pretrained(model_id) | |
ddpm_scheduler = DDPMScheduler() | |
ddim_scheduler = DDIMScheduler() | |
ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler) | |
ddpm.to(torch_device) | |
ddpm.set_progress_bar_config(disable=None) | |
ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler) | |
ddim.to(torch_device) | |
ddim.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device=torch_device).manual_seed(seed) | |
ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images | |
generator = torch.Generator(device=torch_device).manual_seed(seed) | |
ddim_images = ddim( | |
batch_size=2, | |
generator=generator, | |
num_inference_steps=1000, | |
eta=1.0, | |
output_type="numpy", | |
use_clipped_model_output=True, # Need this to make DDIM match DDPM | |
).images | |
# the values aren't exactly equal, but the images look the same visually | |
assert np.abs(ddpm_images - ddim_images).max() < 1e-1 | |