Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import json | |
import torch | |
import wavio | |
from tqdm import tqdm | |
from huggingface_hub import snapshot_download | |
from models import AudioDiffusion, DDPMScheduler | |
from audioldm.audio.stft import TacotronSTFT | |
from audioldm.variational_autoencoder import AutoencoderKL | |
from gradio import Markdown | |
class Tango: | |
def __init__(self, name="declare-lab/tango", device="cuda:0"): | |
path = snapshot_download(repo_id=name) | |
vae_config = json.load(open("{}/vae_config.json".format(path))) | |
stft_config = json.load(open("{}/stft_config.json".format(path))) | |
main_config = json.load(open("{}/main_config.json".format(path))) | |
self.vae = AutoencoderKL(**vae_config).to(device) | |
self.stft = TacotronSTFT(**stft_config).to(device) | |
self.model = AudioDiffusion(**main_config).to(device) | |
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device) | |
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device) | |
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device) | |
self.vae.load_state_dict(vae_weights) | |
self.stft.load_state_dict(stft_weights) | |
self.model.load_state_dict(main_weights) | |
print ("Successfully loaded checkpoint from:", name) | |
self.vae.eval() | |
self.stft.eval() | |
self.model.eval() | |
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler") | |
def chunks(self, lst, n): | |
""" Yield successive n-sized chunks from a list. """ | |
for i in range(0, len(lst), n): | |
yield lst[i:i + n] | |
def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): | |
""" Genrate audio for a single prompt string. """ | |
with torch.no_grad(): | |
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) | |
mel = self.vae.decode_first_stage(latents) | |
wave = self.vae.decode_to_waveform(mel) | |
return wave[0] | |
def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True): | |
""" Genrate audio for a list of prompt strings. """ | |
outputs = [] | |
for k in tqdm(range(0, len(prompts), batch_size)): | |
batch = prompts[k: k+batch_size] | |
with torch.no_grad(): | |
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress) | |
mel = self.vae.decode_first_stage(latents) | |
wave = self.vae.decode_to_waveform(mel) | |
outputs += [item for item in wave] | |
if samples == 1: | |
return outputs | |
else: | |
return list(self.chunks(outputs, samples)) | |
# Initialize TANGO | |
if torch.cuda.is_available(): | |
tango = Tango() | |
else: | |
tango = Tango(device="cpu") | |
def gradio_generate(prompt, steps, guidance): | |
output_wave = tango.generate(prompt, steps, guidance) | |
output_filename = "temp_output.wav" | |
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2) | |
return output_filename | |
description_text = "Generate audio using TANGO by providing a text prompt. \ | |
\n\nLimitations: TANGO is trained on the small AudioCaps dataset so it may not generate good audio \ | |
samples related to concepts that it has not seen in training (e.g. singing). For the same reason, TANGO \ | |
is not always able to finely control its generations over textual control prompts. For example, \ | |
the generations from TANGO for prompts Chopping tomatoes on a wooden table and Chopping potatoes \ | |
on a metal table are very similar. \ | |
\n\nWe are currently training another version of TANGO on larger datasets to enhance its generalization, \ | |
compositional and controllable generation ability." | |
# Gradio input and output components | |
input_text = gr.inputs.Textbox(lines=2, label="Prompt") | |
output_audio = gr.outputs.Audio(label="Generated Audio", type="filepath") | |
denoising_steps = gr.Slider(minimum=100, maximum=200, value=100, step=1, label="Steps", interactive=True) | |
guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True) | |
# Gradio interface | |
gr_interface = gr.Interface( | |
fn=gradio_generate, | |
inputs=[input_text, denoising_steps, guidance_scale], | |
outputs=[output_audio], | |
title="TANGO: Text to Audio using Instruction-Guided Diffusion", | |
description=description_text, | |
allow_flagging=False, | |
examples=[ | |
["An audience cheering and clapping"], | |
["Rolling thunder with lightning strikes"], | |
["Gentle water stream, birds chirping and sudden gun shot"], | |
["A car engine revving"], | |
["A dog barking"], | |
["A cat meowing"], | |
["Wooden table tapping sound while water pouring"], | |
["Emergency sirens wailing"], | |
["two gunshots followed by birds flying away while chirping"], | |
["Whistling with birds chirping"], | |
["A person snoring"], | |
["Motor vehicles are driving with loud engines and a person whistles"], | |
["People cheering in a stadium while thunder and lightning strikes"], | |
["A helicopter is in flight"], | |
["A dog barking and a man talking and a racing car passes by"], | |
], | |
cache_examples=False, | |
) | |
# Launch Gradio app | |
gr_interface.launch() |