tango2 / models.py
deepanway's picture
add required files
6b448ad
import yaml
import random
import inspect
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import repeat
from tools.torch_tools import wav_to_fbank
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from audioldm.utils import default_audioldm_config, get_metadata
from transformers import CLIPTokenizer, AutoTokenizer
from transformers import CLIPTextModel, T5EncoderModel, AutoModel
import sys
sys.path.insert(0, "diffusers/src")
import diffusers
from diffusers.utils import randn_tensor
from diffusers import DDPMScheduler, UNet2DConditionModel
from diffusers import AutoencoderKL as DiffuserAutoencoderKL
def build_pretrained_models(name):
checkpoint = torch.load(get_metadata()[name]["path"], map_location="cpu")
scale_factor = checkpoint["state_dict"]["scale_factor"].item()
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k}
config = default_audioldm_config(name)
vae_config = config["model"]["params"]["first_stage_config"]["params"]
vae_config["scale_factor"] = scale_factor
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(vae_state_dict)
fn_STFT = TacotronSTFT(
config["preprocessing"]["stft"]["filter_length"],
config["preprocessing"]["stft"]["hop_length"],
config["preprocessing"]["stft"]["win_length"],
config["preprocessing"]["mel"]["n_mel_channels"],
config["preprocessing"]["audio"]["sampling_rate"],
config["preprocessing"]["mel"]["mel_fmin"],
config["preprocessing"]["mel"]["mel_fmax"],
)
vae.eval()
fn_STFT.eval()
return vae, fn_STFT
class AudioDiffusion(nn.Module):
def __init__(
self,
text_encoder_name,
scheduler_name,
unet_model_name=None,
unet_model_config_path=None,
snr_gamma=None,
freeze_text_encoder=True,
uncondition=False,
):
super().__init__()
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
self.text_encoder_name = text_encoder_name
self.scheduler_name = scheduler_name
self.unet_model_name = unet_model_name
self.unet_model_config_path = unet_model_config_path
self.snr_gamma = snr_gamma
self.freeze_text_encoder = freeze_text_encoder
self.uncondition = uncondition
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
if unet_model_config_path:
unet_config = UNet2DConditionModel.load_config(unet_model_config_path)
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet")
self.set_from = "random"
print("UNet initialized randomly.")
else:
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
self.set_from = "pre-trained"
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
print("UNet initialized from stable diffusion checkpoint.")
if "stable-diffusion" in self.text_encoder_name:
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder")
elif "t5" in self.text_encoder_name:
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
else:
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name)
def compute_snr(self, timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def encode_text(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
if self.freeze_text_encoder:
with torch.no_grad():
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
else:
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def forward(self, latents, prompt):
device = self.text_encoder.device
num_train_timesteps = self.noise_scheduler.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
if self.uncondition:
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
if len(mask_indices) > 0:
encoder_hidden_states[mask_indices] = 0
bsz = latents.shape[0]
# Sample a random timestep for each instance
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
timesteps = timesteps.long()
noise = torch.randn_like(latents)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
# Get the target for loss depending on the prediction type
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
if self.set_from == "random":
model_pred = self.unet(
noisy_latents, timesteps, encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
elif self.set_from == "pre-trained":
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
model_pred = self.unet(
compressed_latents, timesteps, encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
if self.snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
snr = self.compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
return loss
@torch.no_grad()
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
disable_progress=True):
device = self.text_encoder.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(prompt) * num_samples_per_prompt
if classifier_free_guidance:
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt)
else:
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt)
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
inference_scheduler.set_timesteps(num_steps, device=device)
timesteps = inference_scheduler.timesteps
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=prompt_embeds,
encoder_attention_mask=boolean_prompt_mask
).sample
# perform guidance
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
progress_bar.update(1)
if self.set_from == "pre-trained":
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
return latents
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
shape = (batch_size, num_channels_latents, 256, 16)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * inference_scheduler.init_noise_sigma
return latents
def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
with torch.no_grad():
prompt_embeds = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
uncond_tokens = [""] * len(prompt)
max_length = prompt_embeds.shape[1]
uncond_batch = self.tokenizer(
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
)
uncond_input_ids = uncond_batch.input_ids.to(device)
uncond_attention_mask = uncond_batch.attention_mask.to(device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
)[0]
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
return prompt_embeds, boolean_prompt_mask