# Stable Diffusion text-to-image fine-tuning The `train_text_to_image.py` script shows how to fine-tune stable diffusion model on your own dataset. ___Note___: ___This script is experimental. The script fine-tunes the whole model and often times the model overfits and runs into issues like catastrophic forgetting. It's recommended to try different hyperparamters to get the best result on your dataset.___ ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` ### Pokemon example You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-4`, so you'll need to visit [its card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens). Run the following command to authenticate your token ```bash huggingface-cli login ``` If you have already cloned the repo, then you won't need to go through these steps. <br> ## Use ONNXRuntime to accelerate training In order to leverage onnxruntime to accelerate training, please use train_text_to_image.py The command to train a DDPM UNetCondition model on the Pokemon dataset with onnxruntime: ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export dataset_name="lambdalabs/pokemon-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$dataset_name \ --use_ema \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --output_dir="sd-pokemon-model" ``` Please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.