# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel, logging, ) from diffusers.utils import load_numpy, nightly, slow, torch_device from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ...test_pipelines_common import PipelineTesterMixin torch.backends.cuda.matmul.allow_tf32 = False class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = StableDiffusionPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5649, 0.6022, 0.4804, 0.5270, 0.5585, 0.4643, 0.5159, 0.4963, 0.4793]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_pndm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler(skip_prk_steps=True) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5099, 0.5677, 0.4671, 0.5128, 0.5697, 0.4676, 0.5277, 0.4964, 0.4946]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_k_lms(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_k_euler_ancestral(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4715, 0.5376, 0.4569, 0.5224, 0.5734, 0.4797, 0.5465, 0.5074, 0.5046]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_k_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_long_prompt(self): components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) do_classifier_free_guidance = True negative_prompt = None num_images_per_prompt = 1 logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion") prompt = 25 * "@" with CaptureLogger(logger) as cap_logger_3: text_embeddings_3 = sd_pipe._encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) prompt = 100 * "@" with CaptureLogger(logger) as cap_logger: text_embeddings = sd_pipe._encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) negative_prompt = "Hello" with CaptureLogger(logger) as cap_logger_2: text_embeddings_2 = sd_pipe._encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape assert text_embeddings.shape[1] == 77 assert cap_logger.out == cap_logger_2.out # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25 assert cap_logger.out.count("@") == 25 assert cap_logger_3.out == "" @slow @require_torch_gpu class StableDiffusion2PipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_default_ddim(self): pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506]) assert np.abs(image_slice - expected_slice).max() < 1e-4 def test_stable_diffusion_pndm(self): pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base") pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506]) assert np.abs(image_slice - expected_slice).max() < 1e-4 def test_stable_diffusion_k_lms(self): pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base") pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.10440, 0.13115, 0.11100, 0.10141, 0.11440, 0.07215, 0.11332, 0.09693, 0.10006]) assert np.abs(image_slice - expected_slice).max() < 1e-4 def test_stable_diffusion_attention_slicing(self): torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # enable attention slicing pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) image_sliced = pipe(**inputs).images mem_bytes = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() # make sure that less than 3.3 GB is allocated assert mem_bytes < 3.3 * 10**9 # disable slicing pipe.disable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) image = pipe(**inputs).images # make sure that more than 3.3 GB is allocated mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes > 3.3 * 10**9 assert np.abs(image_sliced - image).max() < 1e-3 def test_stable_diffusion_text2img_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == inputs["num_inference_steps"] def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(torch_device, dtype=torch.float16) _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.8 GB is allocated assert mem_bytes < 2.8 * 10**9 def test_stable_diffusion_pipeline_with_model_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() inputs = self.get_inputs(torch_device, dtype=torch.float16) # Normal inference pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16, ) pipe.unet.set_default_attn_processor() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) outputs = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # With model offloading # Reload but don't move to cuda pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16, ) pipe.unet.set_default_attn_processor() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device, dtype=torch.float16) outputs_offloaded = pipe(**inputs) mem_bytes_offloaded = torch.cuda.max_memory_allocated() assert np.abs(outputs.images - outputs_offloaded.images).max() < 1e-3 assert mem_bytes_offloaded < mem_bytes assert mem_bytes_offloaded < 3 * 10**9 for module in pipe.text_encoder, pipe.unet, pipe.vae: assert module.device == torch.device("cpu") # With attention slicing torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe.enable_attention_slicing() _ = pipe(**inputs) mem_bytes_slicing = torch.cuda.max_memory_allocated() assert mem_bytes_slicing < mem_bytes_offloaded @nightly @require_torch_gpu class StableDiffusion2PipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def test_stable_diffusion_2_0_default_ddim(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base").to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_0_base_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_2_1_default_pndm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_ddim(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_lms(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_lms.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_euler(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_euler.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_dpm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 25 image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_dpm_multi.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3