# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel from diffusers.utils.testing_utils import load_image, load_numpy, nightly, require_torch_gpu, skip_mps, torch_device from ...pipeline_params import IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_INPAINTING_PARAMS from ...test_pipelines_common import PipelineTesterMixin torch.backends.cuda.matmul.allow_tf32 = False class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = RePaintPipeline params = IMAGE_INPAINTING_PARAMS - {"width", "height", "guidance_scale"} required_optional_params = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } batch_params = IMAGE_INPAINTING_BATCH_PARAMS test_cpu_offload = False def get_dummy_components(self): torch.manual_seed(0) torch.manual_seed(0) unet = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) scheduler = RePaintScheduler() components = {"unet": unet, "scheduler": scheduler} return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32)) image = torch.from_numpy(image).to(device=device, dtype=torch.float32) mask = (image > 0).to(device=device, dtype=torch.float32) inputs = { "image": image, "mask_image": mask, "generator": generator, "num_inference_steps": 5, "eta": 0.0, "jump_length": 2, "jump_n_sample": 2, "output_type": "numpy", } return inputs def test_repaint(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = RePaintPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @skip_mps def test_save_load_local(self): return super().test_save_load_local() # RePaint can hardly be made deterministic since the scheduler is currently always # nondeterministic @unittest.skip("non-deterministic pipeline") def test_inference_batch_single_identical(self): return super().test_inference_batch_single_identical() @skip_mps def test_dict_tuple_outputs_equivalent(self): return super().test_dict_tuple_outputs_equivalent() @skip_mps def test_save_load_optional_components(self): return super().test_save_load_optional_components() @skip_mps def test_attention_slicing_forward_pass(self): return super().test_attention_slicing_forward_pass() @nightly @require_torch_gpu class RepaintPipelineNightlyTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_celebahq(self): original_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" "repaint/celeba_hq_256.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" "repaint/celeba_hq_256_result.npy" ) model_id = "google/ddpm-ema-celebahq-256" unet = UNet2DModel.from_pretrained(model_id) scheduler = RePaintScheduler.from_pretrained(model_id) repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device) repaint.set_progress_bar_config(disable=None) repaint.enable_attention_slicing() generator = torch.manual_seed(0) output = repaint( original_image, mask_image, num_inference_steps=250, eta=0.0, jump_length=10, jump_n_sample=10, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).mean() < 1e-2