# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import load_numpy, nightly, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu, skip_mps from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ...test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = UnCLIPPipeline params = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", "guidance_scale", "prompt_embeds", "cross_attention_kwargs", } batch_params = TEXT_TO_IMAGE_BATCH_PARAMS required_optional_params = [ "generator", "return_dict", "prior_num_inference_steps", "decoder_num_inference_steps", "super_res_num_inference_steps", ] test_xformers_attention = False @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config) @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } model = PriorTransformer(**model_kwargs) return model @property def dummy_text_proj(self): torch.manual_seed(0) model_kwargs = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } model = UnCLIPTextProjModel(**model_kwargs) return model @property def dummy_decoder(self): torch.manual_seed(0) model_kwargs = { "sample_size": 32, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_super_res_kwargs(self): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "in_channels": 6, "out_channels": 3, } @property def dummy_super_res_first(self): torch.manual_seed(0) model = UNet2DModel(**self.dummy_super_res_kwargs) return model @property def dummy_super_res_last(self): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1) model = UNet2DModel(**self.dummy_super_res_kwargs) return model def get_dummy_components(self): prior = self.dummy_prior decoder = self.dummy_decoder text_proj = self.dummy_text_proj text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer super_res_first = self.dummy_super_res_first super_res_last = self.dummy_super_res_last prior_scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="sample", num_train_timesteps=1000, clip_sample_range=5.0, ) decoder_scheduler = UnCLIPScheduler( variance_type="learned_range", prediction_type="epsilon", num_train_timesteps=1000, ) super_res_scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="epsilon", num_train_timesteps=1000, ) components = { "prior": prior, "decoder": decoder, "text_proj": text_proj, "text_encoder": text_encoder, "tokenizer": tokenizer, "super_res_first": super_res_first, "super_res_last": super_res_last, "prior_scheduler": prior_scheduler, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "generator": generator, "prior_num_inference_steps": 2, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "numpy", } return inputs def test_unclip(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array( [ 0.9997, 0.9988, 0.0028, 0.9997, 0.9984, 0.9965, 0.0029, 0.9986, 0.0025, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_unclip_passed_text_embed(self): device = torch.device("cpu") class DummyScheduler: init_noise_sigma = 1 components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) prior = components["prior"] decoder = components["decoder"] super_res_first = components["super_res_first"] tokenizer = components["tokenizer"] text_encoder = components["text_encoder"] generator = torch.Generator(device=device).manual_seed(0) dtype = prior.dtype batch_size = 1 shape = (batch_size, prior.config.embedding_dim) prior_latents = pipe.prepare_latents( shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() ) shape = (batch_size, decoder.in_channels, decoder.sample_size, decoder.sample_size) decoder_latents = pipe.prepare_latents( shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() ) shape = ( batch_size, super_res_first.in_channels // 2, super_res_first.sample_size, super_res_first.sample_size, ) super_res_latents = pipe.prepare_latents( shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() ) pipe.set_progress_bar_config(disable=None) prompt = "this is a prompt example" generator = torch.Generator(device=device).manual_seed(0) output = pipe( [prompt], generator=generator, prior_num_inference_steps=2, decoder_num_inference_steps=2, super_res_num_inference_steps=2, prior_latents=prior_latents, decoder_latents=decoder_latents, super_res_latents=super_res_latents, output_type="np", ) image = output.images text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt", ) text_model_output = text_encoder(text_inputs.input_ids) text_attention_mask = text_inputs.attention_mask generator = torch.Generator(device=device).manual_seed(0) image_from_text = pipe( generator=generator, prior_num_inference_steps=2, decoder_num_inference_steps=2, super_res_num_inference_steps=2, prior_latents=prior_latents, decoder_latents=decoder_latents, super_res_latents=super_res_latents, text_model_output=text_model_output, text_attention_mask=text_attention_mask, output_type="np", )[0] # make sure passing text embeddings manually is identical assert np.abs(image - image_from_text).max() < 1e-4 # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass # because UnCLIP GPU undeterminism requires a looser check. @skip_mps def test_attention_slicing_forward_pass(self): test_max_difference = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference) # Overriding PipelineTesterMixin::test_inference_batch_single_identical # because UnCLIP undeterminism requires a looser check. @skip_mps def test_inference_batch_single_identical(self): test_max_difference = torch_device == "cpu" relax_max_difference = True additional_params_copy_to_batched_inputs = [ "prior_num_inference_steps", "decoder_num_inference_steps", "super_res_num_inference_steps", ] self._test_inference_batch_single_identical( test_max_difference=test_max_difference, relax_max_difference=relax_max_difference, additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, ) def test_inference_batch_consistent(self): additional_params_copy_to_batched_inputs = [ "prior_num_inference_steps", "decoder_num_inference_steps", "super_res_num_inference_steps", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes batch_sizes = [2, 3] self._test_inference_batch_consistent( batch_sizes=batch_sizes, additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs ) @skip_mps def test_dict_tuple_outputs_equivalent(self): return super().test_dict_tuple_outputs_equivalent() @skip_mps def test_save_load_local(self): return super().test_save_load_local() @skip_mps def test_save_load_optional_components(self): return super().test_save_load_optional_components() @nightly class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_unclip_karlo_cpu_fp32(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_horse_cpu.npy" ) pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha") pipeline.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipeline( "horse", num_images_per_prompt=1, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 1e-1 @slow @require_torch_gpu class UnCLIPPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_unclip_karlo(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_horse_fp16.npy" ) pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) output = pipeline( "horse", generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(image, expected_image) def test_unclip_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _ = pipe( "horse", num_images_per_prompt=1, prior_num_inference_steps=2, decoder_num_inference_steps=2, super_res_num_inference_steps=2, output_type="np", ) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9