Spaces:
Sleeping
Sleeping
import json | |
import requests | |
import gradio as gr | |
import random | |
import time | |
import os | |
import datetime | |
from datetime import datetime | |
#print('for update') | |
API_TOKEN = os.getenv("API_TOKEN") | |
DECODEM_TOKEN=os.getenv("DECODEM_TOKEN") | |
from huggingface_hub import InferenceApi | |
inference = InferenceApi("bigscience/bloom",token=API_TOKEN) | |
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} | |
url_decodemprompts='https://us-central1-createinsightsproject.cloudfunctions.net/getdecodemprompts' | |
data={"prompt_type":'market_size',"decodem_token":DECODEM_TOKEN} | |
try: | |
r = requests.post(url_decodemprompts, data=json.dumps(data), headers=headers) | |
except requests.exceptions.ReadTimeout as e: | |
print(e) | |
#print(r.content) | |
prompt=str(r.content, 'UTF-8') | |
print(prompt) | |
def infer(prompt, | |
max_length = 250, | |
top_k = 0, | |
num_beams = 0, | |
no_repeat_ngram_size = 2, | |
top_p = 0.9, | |
seed=42, | |
temperature=0.7, | |
greedy_decoding = False, | |
return_full_text = False): | |
print(seed) | |
top_k = None if top_k == 0 else top_k | |
do_sample = False if num_beams > 0 else not greedy_decoding | |
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams | |
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size | |
top_p = None if num_beams else top_p | |
early_stopping = None if num_beams is None else num_beams > 0 | |
params = { | |
"max_new_tokens": max_length, | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temperature, | |
"do_sample": do_sample, | |
"seed": seed, | |
"early_stopping":early_stopping, | |
"no_repeat_ngram_size":no_repeat_ngram_size, | |
"num_beams":num_beams, | |
"return_full_text":return_full_text | |
} | |
s = time.time() | |
response = inference(prompt, params=params) | |
#print(response) | |
proc_time = time.time()-s | |
#print(f"Processing time was {proc_time} seconds") | |
return response | |
def getideas(text_inp): | |
print(text_inp) | |
print(datetime.today().strftime("%d-%m-%Y")) | |
text = prompt+"\nInput:"+text_inp + "\nOutput:" | |
resp = infer(text,seed=random.randint(0,100)) | |
generated_text=resp[0]['generated_text'] | |
result = generated_text.replace(text,'').strip() | |
result = result.replace("Output:","") | |
parts = result.split("###") | |
topic = parts[0].strip() | |
topic="\n".join(topic.split('\n')[:3]) | |
print(topic) | |
return(topic) | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1><center>Market Sizing Framework for Your Business</center></h1>") | |
gr.Markdown( | |
"""ChatGPT based Insights from <a href="https://www.decodem.ai">Decodem.ai</a> for businesses.\nWhile ChatGPT has multiple use cases we have evolved specific use cases/ templates for businesses \n\n This template provides ideas on how a business can size a market they are entering. Enter a business area to size and get the results. Use examples as a guide. We use a equally powerful AI model bigscience/bloom.""" | |
) | |
textbox = gr.Textbox(placeholder="Enter market size focus for business here...", lines=1,label='Your business area') | |
btn = gr.Button("Generate") | |
output1 = gr.Textbox(lines=2,label='Market Sizing Framework') | |
btn.click(getideas,inputs=[textbox], outputs=[output1]) | |
examples = gr.Examples(examples=['ice cream parlor in London','HR saas for fintech','book shops in NYC','Starbucks cafe in Bangalore','organic vegetables via ecommerce','grocery delivery'], | |
inputs=[textbox]) | |
demo.launch() |