deep-learning-analytics commited on
Commit
432e4a1
·
1 Parent(s): a04ec84

reading image with PIL

Browse files
Files changed (1) hide show
  1. app.py +3 -8
app.py CHANGED
@@ -2,6 +2,7 @@ import os
2
  import pandas as pd
3
  import numpy as np
4
  import torch
 
5
  from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
6
  from torch import nn
7
  import streamlit as st
@@ -9,14 +10,14 @@ import streamlit as st
9
 
10
  raw_image = st.file_uploader('Raw Input Image')
11
  if raw_image is not None:
12
-
13
  df = pd.read_csv('class_dict_seg.csv')
14
  classes = df['name']
15
  palette = df[[' r', ' g', ' b']].values
16
  id2label = classes.to_dict()
17
  label2id = {v: k for k, v in id2label.items()}
18
 
19
- image = np.asarray(raw_image)
 
20
 
21
  feature_extractor = SegformerFeatureExtractor(align=False, reduce_zero_label=False)
22
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -25,21 +26,17 @@ if raw_image is not None:
25
  num_labels=len(id2label), id2label=id2label, label2id=label2id,
26
  reshape_last_stage=True)
27
  model = model.to(device)
28
-
29
  # prepare the image for the model (aligned resize)
30
  feature_extractor_inference = SegformerFeatureExtractor(do_random_crop=False, do_pad=False)
31
-
32
  pixel_values = feature_extractor_inference(image, return_tensors="pt").pixel_values.to(device)
33
  model.eval()
34
  outputs = model(pixel_values=pixel_values)# logits are of shape (batch_size, num_labels, height/4, width/4)
35
  logits = outputs.logits.cpu()
36
-
37
  # First, rescale logits to original image size
38
  upsampled_logits = nn.functional.interpolate(logits,
39
  size=image.shape[:-1], # (height, width)
40
  mode='bilinear',
41
  align_corners=False)
42
-
43
  # Second, apply argmax on the class dimension
44
  seg = upsampled_logits.argmax(dim=1)[0]
45
  color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
@@ -47,9 +44,7 @@ if raw_image is not None:
47
  color_seg[seg == label, :] = color
48
  # Convert to BGR
49
  color_seg = color_seg[..., ::-1]
50
-
51
  # Show image + mask
52
  img = np.array(image) * 0.5 + color_seg * 0.5
53
  img = img.astype(np.uint8)
54
-
55
  st.image(img, caption="Segmented Image")
 
2
  import pandas as pd
3
  import numpy as np
4
  import torch
5
+ from PIL import Image
6
  from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
7
  from torch import nn
8
  import streamlit as st
 
10
 
11
  raw_image = st.file_uploader('Raw Input Image')
12
  if raw_image is not None:
 
13
  df = pd.read_csv('class_dict_seg.csv')
14
  classes = df['name']
15
  palette = df[[' r', ' g', ' b']].values
16
  id2label = classes.to_dict()
17
  label2id = {v: k for k, v in id2label.items()}
18
 
19
+ image = Image.open(raw_image)
20
+ image = np.asarray(image)
21
 
22
  feature_extractor = SegformerFeatureExtractor(align=False, reduce_zero_label=False)
23
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
26
  num_labels=len(id2label), id2label=id2label, label2id=label2id,
27
  reshape_last_stage=True)
28
  model = model.to(device)
 
29
  # prepare the image for the model (aligned resize)
30
  feature_extractor_inference = SegformerFeatureExtractor(do_random_crop=False, do_pad=False)
 
31
  pixel_values = feature_extractor_inference(image, return_tensors="pt").pixel_values.to(device)
32
  model.eval()
33
  outputs = model(pixel_values=pixel_values)# logits are of shape (batch_size, num_labels, height/4, width/4)
34
  logits = outputs.logits.cpu()
 
35
  # First, rescale logits to original image size
36
  upsampled_logits = nn.functional.interpolate(logits,
37
  size=image.shape[:-1], # (height, width)
38
  mode='bilinear',
39
  align_corners=False)
 
40
  # Second, apply argmax on the class dimension
41
  seg = upsampled_logits.argmax(dim=1)[0]
42
  color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
 
44
  color_seg[seg == label, :] = color
45
  # Convert to BGR
46
  color_seg = color_seg[..., ::-1]
 
47
  # Show image + mask
48
  img = np.array(image) * 0.5 + color_seg * 0.5
49
  img = img.astype(np.uint8)
 
50
  st.image(img, caption="Segmented Image")