deep-learning-analytics commited on
Commit
43db0df
·
1 Parent(s): 7b76a8c

reverting to spinners

Browse files
Files changed (1) hide show
  1. app.py +1 -7
app.py CHANGED
@@ -48,17 +48,11 @@ if raw_image is not None:
48
  # Second, apply argmax on the class dimension
49
  seg = upsampled_logits.argmax(dim=1)[0]
50
  color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
51
- predicted_labels = []
52
  for label, color in enumerate(palette):
53
  color_seg[seg == label, :] = color
54
- predicted_labels.append(label)
55
  # Convert to BGR
56
  color_seg = color_seg[..., ::-1]
57
  # Show image + mask
58
  img = np.array(image) * 0.5 + color_seg * 0.5
59
  img = img.astype(np.uint8)
60
- st.image(img, caption="Segmented Image")
61
-
62
- st.header('Predicted Labels')
63
- for idx, label in enumerate(predicted_labels):
64
- st.subheader(f'{idx+1}) {label}')
 
48
  # Second, apply argmax on the class dimension
49
  seg = upsampled_logits.argmax(dim=1)[0]
50
  color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
 
51
  for label, color in enumerate(palette):
52
  color_seg[seg == label, :] = color
 
53
  # Convert to BGR
54
  color_seg = color_seg[..., ::-1]
55
  # Show image + mask
56
  img = np.array(image) * 0.5 + color_seg * 0.5
57
  img = img.astype(np.uint8)
58
+ st.image(img, caption="Segmented Image")