narugo1992
commited on
Commit
·
e155f7f
1
Parent(s):
21e723b
dev(narugo): simplify code
Browse files- aicheck.py +0 -42
- app.py +12 -89
- base.py +65 -0
- chsex.py +0 -42
- cls.py +0 -41
- monochrome.py +0 -42
- rating.py +0 -42
aicheck.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from functools import lru_cache
|
4 |
-
from typing import Mapping, List
|
5 |
-
|
6 |
-
from huggingface_hub import HfFileSystem
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
from imgutils.data import ImageTyping, load_image
|
9 |
-
from natsort import natsorted
|
10 |
-
|
11 |
-
from onnx_ import _open_onnx_model
|
12 |
-
from preprocess import _img_encode
|
13 |
-
|
14 |
-
hfs = HfFileSystem()
|
15 |
-
|
16 |
-
_REPO = 'deepghs/anime_ai_check'
|
17 |
-
_AICHECK_MODELS = natsorted([
|
18 |
-
os.path.dirname(os.path.relpath(file, _REPO))
|
19 |
-
for file in hfs.glob(f'{_REPO}/*/model.onnx')
|
20 |
-
])
|
21 |
-
_DEFAULT_AICHECK_MODEL = 'mobilenetv3_sce_dist'
|
22 |
-
|
23 |
-
|
24 |
-
@lru_cache()
|
25 |
-
def _open_anime_aicheck_model(model_name):
|
26 |
-
return _open_onnx_model(hf_hub_download(_REPO, f'{model_name}/model.onnx'))
|
27 |
-
|
28 |
-
|
29 |
-
@lru_cache()
|
30 |
-
def _get_tags(model_name) -> List[str]:
|
31 |
-
with open(hf_hub_download(_REPO, f'{model_name}/meta.json'), 'r') as f:
|
32 |
-
return json.load(f)['labels']
|
33 |
-
|
34 |
-
|
35 |
-
def _gr_aicheck(image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]:
|
36 |
-
image = load_image(image, mode='RGB')
|
37 |
-
input_ = _img_encode(image, size=(size, size))[None, ...]
|
38 |
-
output, = _open_anime_aicheck_model(model_name).run(['output'], {'input': input_})
|
39 |
-
|
40 |
-
labels = _get_tags(model_name)
|
41 |
-
values = dict(zip(labels, map(lambda x: x.item(), output[0])))
|
42 |
-
return values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -2,98 +2,21 @@ import os
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
if __name__ == '__main__':
|
12 |
with gr.Blocks() as demo:
|
13 |
with gr.Tabs():
|
14 |
-
|
15 |
-
|
16 |
-
with gr.Column():
|
17 |
-
gr_cls_input_image = gr.Image(type='pil', label='Original Image')
|
18 |
-
gr_cls_model = gr.Dropdown(_CLS_MODELS, value=_DEFAULT_CLS_MODEL, label='Model')
|
19 |
-
gr_cls_infer_size = gr.Slider(224, 640, value=384, step=32, label='Infer Size')
|
20 |
-
gr_cls_submit = gr.Button(value='Submit', variant='primary')
|
21 |
-
|
22 |
-
with gr.Column():
|
23 |
-
gr_cls_output = gr.Label(label='Classes')
|
24 |
-
|
25 |
-
gr_cls_submit.click(
|
26 |
-
_gr_classification,
|
27 |
-
inputs=[gr_cls_input_image, gr_cls_model, gr_cls_infer_size],
|
28 |
-
outputs=[gr_cls_output],
|
29 |
-
)
|
30 |
-
|
31 |
-
with gr.Tab('Monochrome'):
|
32 |
-
with gr.Row():
|
33 |
-
with gr.Column():
|
34 |
-
gr_mono_input_image = gr.Image(type='pil', label='Original Image')
|
35 |
-
gr_mono_model = gr.Dropdown(_MONO_MODELS, value=_DEFAULT_MONO_MODEL, label='Model')
|
36 |
-
gr_mono_infer_size = gr.Slider(224, 640, value=384, step=32, label='Infer Size')
|
37 |
-
gr_mono_submit = gr.Button(value='Submit', variant='primary')
|
38 |
-
|
39 |
-
with gr.Column():
|
40 |
-
gr_mono_output = gr.Label(label='Classes')
|
41 |
-
|
42 |
-
gr_mono_submit.click(
|
43 |
-
_gr_monochrome,
|
44 |
-
inputs=[gr_mono_input_image, gr_mono_model, gr_mono_infer_size],
|
45 |
-
outputs=[gr_mono_output],
|
46 |
-
)
|
47 |
-
|
48 |
-
with gr.Tab('AI Check'):
|
49 |
-
with gr.Row():
|
50 |
-
with gr.Column():
|
51 |
-
gr_aicheck_input_image = gr.Image(type='pil', label='Original Image')
|
52 |
-
gr_aicheck_model = gr.Dropdown(_AICHECK_MODELS, value=_DEFAULT_AICHECK_MODEL, label='Model')
|
53 |
-
gr_aicheck_infer_size = gr.Slider(224, 640, value=384, step=32, label='Infer Size')
|
54 |
-
gr_aicheck_submit = gr.Button(value='Submit', variant='primary')
|
55 |
-
|
56 |
-
with gr.Column():
|
57 |
-
gr_aicheck_output = gr.Label(label='Classes')
|
58 |
-
|
59 |
-
gr_aicheck_submit.click(
|
60 |
-
_gr_aicheck,
|
61 |
-
inputs=[gr_aicheck_input_image, gr_aicheck_model, gr_aicheck_infer_size],
|
62 |
-
outputs=[gr_aicheck_output],
|
63 |
-
)
|
64 |
-
|
65 |
-
with gr.Tab('Rating'):
|
66 |
-
with gr.Row():
|
67 |
-
with gr.Column():
|
68 |
-
gr_rating_input_image = gr.Image(type='pil', label='Original Image')
|
69 |
-
gr_rating_model = gr.Dropdown(_RATING_MODELS, value=_DEFAULT_RATING_MODEL, label='Model')
|
70 |
-
gr_rating_infer_size = gr.Slider(224, 640, value=384, step=32, label='Infer Size')
|
71 |
-
gr_rating_submit = gr.Button(value='Submit', variant='primary')
|
72 |
-
|
73 |
-
with gr.Column():
|
74 |
-
gr_rating_output = gr.Label(label='Classes')
|
75 |
-
|
76 |
-
gr_rating_submit.click(
|
77 |
-
_gr_rating,
|
78 |
-
inputs=[gr_rating_input_image, gr_rating_model, gr_rating_infer_size],
|
79 |
-
outputs=[gr_rating_output],
|
80 |
-
)
|
81 |
-
|
82 |
-
with gr.Tab('Character Sex'):
|
83 |
-
with gr.Row():
|
84 |
-
with gr.Column():
|
85 |
-
gr_chsex_input_image = gr.Image(type='pil', label='Original Image')
|
86 |
-
gr_chsex_model = gr.Dropdown(_CHSEX_MODELS, value=_DEFAULT_CHSEX_MODEL, label='Model')
|
87 |
-
gr_chsex_infer_size = gr.Slider(224, 640, value=384, step=32, label='Infer Size')
|
88 |
-
gr_chsex_submit = gr.Button(value='Submit', variant='primary')
|
89 |
-
|
90 |
-
with gr.Column():
|
91 |
-
gr_chsex_output = gr.Label(label='Classes')
|
92 |
-
|
93 |
-
gr_chsex_submit.click(
|
94 |
-
_gr_chsex,
|
95 |
-
inputs=[gr_chsex_input_image, gr_chsex_model, gr_chsex_infer_size],
|
96 |
-
outputs=[gr_chsex_output],
|
97 |
-
)
|
98 |
|
99 |
demo.queue(os.cpu_count()).launch()
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
+
from base import Classification
|
6 |
+
|
7 |
+
apps = [
|
8 |
+
Classification('Classification', 'deepghs/anime_classification', 'mobilenetv3_sce_dist'),
|
9 |
+
Classification('Monochrome', 'deepghs/monochrome_detect', 'mobilenetv3_large_100_dist'),
|
10 |
+
Classification('AI Check', 'deepghs/anime_ai_check', 'mobilenetv3_sce_dist'),
|
11 |
+
Classification('Rating', 'deepghs/anime_rating', 'mobilenetv3_sce_dist'),
|
12 |
+
Classification('Character Sex', 'deepghs/anime_ch_sex', 'caformer_s36_v1'),
|
13 |
+
Classification('Character Skin', 'deepghs/anime_ch_skin_color', 'caformer_s36'),
|
14 |
+
]
|
15 |
|
16 |
if __name__ == '__main__':
|
17 |
with gr.Blocks() as demo:
|
18 |
with gr.Tabs():
|
19 |
+
for cls in apps:
|
20 |
+
cls.create_gr()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
demo.queue(os.cpu_count()).launch()
|
base.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from functools import lru_cache
|
4 |
+
from typing import Mapping
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
from huggingface_hub import HfFileSystem, hf_hub_download
|
8 |
+
from imgutils.data import ImageTyping, load_image
|
9 |
+
from natsort import natsorted
|
10 |
+
|
11 |
+
from onnx_ import _open_onnx_model
|
12 |
+
from preprocess import _img_encode
|
13 |
+
|
14 |
+
hfs = HfFileSystem()
|
15 |
+
|
16 |
+
|
17 |
+
@lru_cache()
|
18 |
+
def open_model_from_repo(repository, model):
|
19 |
+
runtime = _open_onnx_model(hf_hub_download(repository, f'{model}/model.onnx'))
|
20 |
+
with open(hf_hub_download(repository, f'{model}/meta.json'), 'r') as f:
|
21 |
+
labels = json.load(f)['labels']
|
22 |
+
|
23 |
+
return runtime, labels
|
24 |
+
|
25 |
+
|
26 |
+
class Classification:
|
27 |
+
def __init__(self, title: str, repository: str, default_model=None, imgsize: int = 384):
|
28 |
+
self.title = title
|
29 |
+
self.repository = repository
|
30 |
+
self.models = natsorted([
|
31 |
+
os.path.dirname(os.path.relpath(file, self.repository))
|
32 |
+
for file in hfs.glob(f'{self.repository}/*/model.onnx')
|
33 |
+
])
|
34 |
+
self.default_model = default_model or self.models[0]
|
35 |
+
self.imgsize = imgsize
|
36 |
+
|
37 |
+
def _open_onnx_model(self, model):
|
38 |
+
return open_model_from_repo(self.repository, model)
|
39 |
+
|
40 |
+
def _gr_classification(self, image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]:
|
41 |
+
image = load_image(image, mode='RGB')
|
42 |
+
input_ = _img_encode(image, size=(size, size))[None, ...]
|
43 |
+
model, labels = self._open_onnx_model(model_name)
|
44 |
+
output, = model.run(['output'], {'input': input_})
|
45 |
+
|
46 |
+
values = dict(zip(labels, map(lambda x: x.item(), output[0])))
|
47 |
+
return values
|
48 |
+
|
49 |
+
def create_gr(self):
|
50 |
+
with gr.Tab(self.title):
|
51 |
+
with gr.Row():
|
52 |
+
with gr.Column():
|
53 |
+
gr_input_image = gr.Image(type='pil', label='Original Image')
|
54 |
+
gr_model = gr.Dropdown(self.models, value=self.default_model, label='Model')
|
55 |
+
gr_infer_size = gr.Slider(224, 640, value=384, step=32, label='Infer Size')
|
56 |
+
gr_submit = gr.Button(value='Submit', variant='primary')
|
57 |
+
|
58 |
+
with gr.Column():
|
59 |
+
gr_output = gr.Label(label='Classes')
|
60 |
+
|
61 |
+
gr_submit.click(
|
62 |
+
self._gr_classification,
|
63 |
+
inputs=[gr_input_image, gr_model, gr_infer_size],
|
64 |
+
outputs=[gr_output],
|
65 |
+
)
|
chsex.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from functools import lru_cache
|
4 |
-
from typing import Mapping, List
|
5 |
-
|
6 |
-
from huggingface_hub import HfFileSystem
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
from imgutils.data import ImageTyping, load_image
|
9 |
-
from natsort import natsorted
|
10 |
-
|
11 |
-
from onnx_ import _open_onnx_model
|
12 |
-
from preprocess import _img_encode
|
13 |
-
|
14 |
-
hfs = HfFileSystem()
|
15 |
-
|
16 |
-
_REPO = 'deepghs/anime_ch_sex'
|
17 |
-
_CHSEX_MODELS = natsorted([
|
18 |
-
os.path.dirname(os.path.relpath(file, _REPO))
|
19 |
-
for file in hfs.glob(f'{_REPO}/*/model.onnx')
|
20 |
-
])
|
21 |
-
_DEFAULT_CHSEX_MODEL = 'caformer_s36_v1'
|
22 |
-
|
23 |
-
|
24 |
-
@lru_cache()
|
25 |
-
def _open_anime_chsex_model(model_name):
|
26 |
-
return _open_onnx_model(hf_hub_download(_REPO, f'{model_name}/model.onnx'))
|
27 |
-
|
28 |
-
|
29 |
-
@lru_cache()
|
30 |
-
def _get_tags(model_name) -> List[str]:
|
31 |
-
with open(hf_hub_download(_REPO, f'{model_name}/meta.json'), 'r') as f:
|
32 |
-
return json.load(f)['labels']
|
33 |
-
|
34 |
-
|
35 |
-
def _gr_chsex(image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]:
|
36 |
-
image = load_image(image, mode='RGB')
|
37 |
-
input_ = _img_encode(image, size=(size, size))[None, ...]
|
38 |
-
output, = _open_anime_chsex_model(model_name).run(['output'], {'input': input_})
|
39 |
-
|
40 |
-
labels = _get_tags(model_name)
|
41 |
-
values = dict(zip(labels, map(lambda x: x.item(), output[0])))
|
42 |
-
return values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cls.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from functools import lru_cache
|
4 |
-
from typing import Mapping, List
|
5 |
-
|
6 |
-
from huggingface_hub import hf_hub_download, HfFileSystem
|
7 |
-
from imgutils.data import ImageTyping, load_image
|
8 |
-
from natsort import natsorted
|
9 |
-
|
10 |
-
from onnx_ import _open_onnx_model
|
11 |
-
from preprocess import _img_encode
|
12 |
-
|
13 |
-
hfs = HfFileSystem()
|
14 |
-
|
15 |
-
_REPO = 'deepghs/anime_classification'
|
16 |
-
_CLS_MODELS = natsorted([
|
17 |
-
os.path.dirname(os.path.relpath(file, _REPO))
|
18 |
-
for file in hfs.glob(f'{_REPO}/*/model.onnx')
|
19 |
-
])
|
20 |
-
_DEFAULT_CLS_MODEL = 'mobilenetv3_sce_dist'
|
21 |
-
|
22 |
-
|
23 |
-
@lru_cache()
|
24 |
-
def _open_anime_classify_model(model_name):
|
25 |
-
return _open_onnx_model(hf_hub_download(_REPO, f'{model_name}/model.onnx'))
|
26 |
-
|
27 |
-
|
28 |
-
@lru_cache()
|
29 |
-
def _get_tags(model_name) -> List[str]:
|
30 |
-
with open(hf_hub_download(_REPO, f'{model_name}/meta.json'), 'r') as f:
|
31 |
-
return json.load(f)['labels']
|
32 |
-
|
33 |
-
|
34 |
-
def _gr_classification(image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]:
|
35 |
-
image = load_image(image, mode='RGB')
|
36 |
-
input_ = _img_encode(image, size=(size, size))[None, ...]
|
37 |
-
output, = _open_anime_classify_model(model_name).run(['output'], {'input': input_})
|
38 |
-
|
39 |
-
labels = _get_tags(model_name)
|
40 |
-
values = dict(zip(labels, map(lambda x: x.item(), output[0])))
|
41 |
-
return values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
monochrome.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from functools import lru_cache
|
4 |
-
from typing import Mapping, List
|
5 |
-
|
6 |
-
from huggingface_hub import HfFileSystem
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
from imgutils.data import ImageTyping, load_image
|
9 |
-
from natsort import natsorted
|
10 |
-
|
11 |
-
from onnx_ import _open_onnx_model
|
12 |
-
from preprocess import _img_encode
|
13 |
-
|
14 |
-
hfs = HfFileSystem()
|
15 |
-
|
16 |
-
_REPO = 'deepghs/monochrome_detect'
|
17 |
-
_MONO_MODELS = natsorted([
|
18 |
-
os.path.dirname(os.path.relpath(file, _REPO))
|
19 |
-
for file in hfs.glob(f'{_REPO}/*/model.onnx')
|
20 |
-
])
|
21 |
-
_DEFAULT_MONO_MODEL = 'mobilenetv3_large_100_dist'
|
22 |
-
|
23 |
-
|
24 |
-
@lru_cache()
|
25 |
-
def _open_anime_monochrome_model(model_name):
|
26 |
-
return _open_onnx_model(hf_hub_download(_REPO, f'{model_name}/model.onnx'))
|
27 |
-
|
28 |
-
|
29 |
-
@lru_cache()
|
30 |
-
def _get_tags(model_name) -> List[str]:
|
31 |
-
with open(hf_hub_download(_REPO, f'{model_name}/meta.json'), 'r') as f:
|
32 |
-
return json.load(f)['labels']
|
33 |
-
|
34 |
-
|
35 |
-
def _gr_monochrome(image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]:
|
36 |
-
image = load_image(image, mode='RGB')
|
37 |
-
input_ = _img_encode(image, size=(size, size))[None, ...]
|
38 |
-
output, = _open_anime_monochrome_model(model_name).run(['output'], {'input': input_})
|
39 |
-
|
40 |
-
labels = _get_tags(model_name)
|
41 |
-
values = dict(zip(labels, map(lambda x: x.item(), output[0])))
|
42 |
-
return values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rating.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from functools import lru_cache
|
4 |
-
from typing import Mapping, List
|
5 |
-
|
6 |
-
from huggingface_hub import HfFileSystem
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
from imgutils.data import ImageTyping, load_image
|
9 |
-
from natsort import natsorted
|
10 |
-
|
11 |
-
from onnx_ import _open_onnx_model
|
12 |
-
from preprocess import _img_encode
|
13 |
-
|
14 |
-
hfs = HfFileSystem()
|
15 |
-
|
16 |
-
_REPO = 'deepghs/anime_rating'
|
17 |
-
_RATING_MODELS = natsorted([
|
18 |
-
os.path.dirname(os.path.relpath(file, _REPO))
|
19 |
-
for file in hfs.glob(f'{_REPO}/*/model.onnx')
|
20 |
-
])
|
21 |
-
_DEFAULT_RATING_MODEL = 'mobilenetv3_sce_dist'
|
22 |
-
|
23 |
-
|
24 |
-
@lru_cache()
|
25 |
-
def _open_anime_rating_model(model_name):
|
26 |
-
return _open_onnx_model(hf_hub_download(_REPO, f'{model_name}/model.onnx'))
|
27 |
-
|
28 |
-
|
29 |
-
@lru_cache()
|
30 |
-
def _get_tags(model_name) -> List[str]:
|
31 |
-
with open(hf_hub_download(_REPO, f'{model_name}/meta.json'), 'r') as f:
|
32 |
-
return json.load(f)['labels']
|
33 |
-
|
34 |
-
|
35 |
-
def _gr_rating(image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]:
|
36 |
-
image = load_image(image, mode='RGB')
|
37 |
-
input_ = _img_encode(image, size=(size, size))[None, ...]
|
38 |
-
output, = _open_anime_rating_model(model_name).run(['output'], {'input': input_})
|
39 |
-
|
40 |
-
labels = _get_tags(model_name)
|
41 |
-
values = dict(zip(labels, map(lambda x: x.item(), output[0])))
|
42 |
-
return values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|