narugo1992
commited on
Commit
•
582519c
1
Parent(s):
2023a9f
dev(narugo): add monochrome
Browse files- app.py +18 -0
- cls.py +21 -17
- monochrome.py +42 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -3,6 +3,7 @@ import os
|
|
3 |
import gradio as gr
|
4 |
|
5 |
from cls import _CLS_MODELS, _DEFAULT_CLS_MODEL, _gr_classification
|
|
|
6 |
|
7 |
if __name__ == '__main__':
|
8 |
with gr.Blocks() as demo:
|
@@ -24,4 +25,21 @@ if __name__ == '__main__':
|
|
24 |
outputs=[gr_cls_output],
|
25 |
)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
demo.queue(os.cpu_count()).launch()
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
from cls import _CLS_MODELS, _DEFAULT_CLS_MODEL, _gr_classification
|
6 |
+
from monochrome import _gr_monochrome, _DEFAULT_MONO_MODEL, _MONO_MODELS
|
7 |
|
8 |
if __name__ == '__main__':
|
9 |
with gr.Blocks() as demo:
|
|
|
25 |
outputs=[gr_cls_output],
|
26 |
)
|
27 |
|
28 |
+
with gr.Tab('Monochrome'):
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Column():
|
31 |
+
gr_mono_input_image = gr.Image(type='pil', label='Original Image')
|
32 |
+
gr_mono_model = gr.Dropdown(_MONO_MODELS, value=_DEFAULT_MONO_MODEL, label='Model')
|
33 |
+
gr_mono_infer_size = gr.Slider(224, 640, value=384, step=32, label='Infer Size')
|
34 |
+
gr_mono_submit = gr.Button(value='Submit', variant='primary')
|
35 |
+
|
36 |
+
with gr.Column():
|
37 |
+
gr_mono_output = gr.Label(label='Classes')
|
38 |
+
|
39 |
+
gr_mono_submit.click(
|
40 |
+
_gr_monochrome,
|
41 |
+
inputs=[gr_mono_input_image, gr_mono_model, gr_mono_infer_size],
|
42 |
+
outputs=[gr_mono_output],
|
43 |
+
)
|
44 |
+
|
45 |
demo.queue(os.cpu_count()).launch()
|
cls.py
CHANGED
@@ -1,31 +1,34 @@
|
|
|
|
|
|
1 |
from functools import lru_cache
|
2 |
-
from typing import Mapping
|
3 |
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
from imgutils.data import ImageTyping, load_image
|
|
|
6 |
|
7 |
from onnx_ import _open_onnx_model
|
8 |
from preprocess import _img_encode
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
'
|
16 |
-
|
17 |
-
'mobilenetv3_sce_dist',
|
18 |
-
'mobilevitv2_150',
|
19 |
-
]
|
20 |
_DEFAULT_CLS_MODEL = 'mobilenetv3_sce_dist'
|
21 |
|
22 |
|
23 |
@lru_cache()
|
24 |
def _open_anime_classify_model(model_name):
|
25 |
-
return _open_onnx_model(hf_hub_download(
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
def _gr_classification(image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]:
|
@@ -33,5 +36,6 @@ def _gr_classification(image: ImageTyping, model_name: str, size=384) -> Mapping
|
|
33 |
input_ = _img_encode(image, size=(size, size))[None, ...]
|
34 |
output, = _open_anime_classify_model(model_name).run(['output'], {'input': input_})
|
35 |
|
36 |
-
|
|
|
37 |
return values
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
from functools import lru_cache
|
4 |
+
from typing import Mapping, List
|
5 |
|
6 |
+
from huggingface_hub import hf_hub_download, HfFileSystem
|
7 |
from imgutils.data import ImageTyping, load_image
|
8 |
+
from natsort import natsorted
|
9 |
|
10 |
from onnx_ import _open_onnx_model
|
11 |
from preprocess import _img_encode
|
12 |
|
13 |
+
hfs = HfFileSystem()
|
14 |
+
|
15 |
+
_REPO = 'deepghs/anime_classification'
|
16 |
+
_CLS_MODELS = natsorted([
|
17 |
+
os.path.dirname(os.path.relpath(file, _REPO))
|
18 |
+
for file in hfs.glob(f'{_REPO}/*/model.onnx')
|
19 |
+
])
|
|
|
|
|
|
|
20 |
_DEFAULT_CLS_MODEL = 'mobilenetv3_sce_dist'
|
21 |
|
22 |
|
23 |
@lru_cache()
|
24 |
def _open_anime_classify_model(model_name):
|
25 |
+
return _open_onnx_model(hf_hub_download(_REPO, f'{model_name}/model.onnx'))
|
26 |
+
|
27 |
+
|
28 |
+
@lru_cache()
|
29 |
+
def _get_tags(model_name) -> List[str]:
|
30 |
+
with open(hf_hub_download(_REPO, f'{model_name}/meta.json'), 'r') as f:
|
31 |
+
return json.load(f)['labels']
|
32 |
|
33 |
|
34 |
def _gr_classification(image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]:
|
|
|
36 |
input_ = _img_encode(image, size=(size, size))[None, ...]
|
37 |
output, = _open_anime_classify_model(model_name).run(['output'], {'input': input_})
|
38 |
|
39 |
+
labels = _get_tags(model_name)
|
40 |
+
values = dict(zip(labels, map(lambda x: x.item(), output[0])))
|
41 |
return values
|
monochrome.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from functools import lru_cache
|
4 |
+
from typing import Mapping, List
|
5 |
+
|
6 |
+
from huggingface_hub import HfFileSystem
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from imgutils.data import ImageTyping, load_image
|
9 |
+
from natsort import natsorted
|
10 |
+
|
11 |
+
from onnx_ import _open_onnx_model
|
12 |
+
from preprocess import _img_encode
|
13 |
+
|
14 |
+
hfs = HfFileSystem()
|
15 |
+
|
16 |
+
_REPO = 'deepghs/monochrome_detect'
|
17 |
+
_MONO_MODELS = natsorted([
|
18 |
+
os.path.dirname(os.path.relpath(file, _REPO))
|
19 |
+
for file in hfs.glob(f'{_REPO}/*/model.onnx')
|
20 |
+
])
|
21 |
+
_DEFAULT_MONO_MODEL = 'mobilenetv3_large_100_dist'
|
22 |
+
|
23 |
+
|
24 |
+
@lru_cache()
|
25 |
+
def _open_anime_monochrome_model(model_name):
|
26 |
+
return _open_onnx_model(hf_hub_download(_REPO, f'{model_name}/model.onnx'))
|
27 |
+
|
28 |
+
|
29 |
+
@lru_cache()
|
30 |
+
def _get_tags(model_name) -> List[str]:
|
31 |
+
with open(hf_hub_download(_REPO, f'{model_name}/meta.json'), 'r') as f:
|
32 |
+
return json.load(f)['labels']
|
33 |
+
|
34 |
+
|
35 |
+
def _gr_monochrome(image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]:
|
36 |
+
image = load_image(image, mode='RGB')
|
37 |
+
input_ = _img_encode(image, size=(size, size))[None, ...]
|
38 |
+
output, = _open_anime_monochrome_model(model_name).run(['output'], {'input': input_})
|
39 |
+
|
40 |
+
labels = _get_tags(model_name)
|
41 |
+
values = dict(zip(labels, map(lambda x: x.item(), output[0])))
|
42 |
+
return values
|
requirements.txt
CHANGED
@@ -2,10 +2,11 @@ gradio==3.18.0
|
|
2 |
numpy
|
3 |
pillow
|
4 |
onnxruntime
|
5 |
-
huggingface_hub
|
6 |
scikit-image
|
7 |
pandas
|
8 |
opencv-python>=4.6.0
|
9 |
hbutils>=0.9.0
|
10 |
dghs-imgutils>=0.1.0
|
11 |
httpx==0.23.0
|
|
|
|
2 |
numpy
|
3 |
pillow
|
4 |
onnxruntime
|
5 |
+
huggingface_hub>=0.14.0
|
6 |
scikit-image
|
7 |
pandas
|
8 |
opencv-python>=4.6.0
|
9 |
hbutils>=0.9.0
|
10 |
dghs-imgutils>=0.1.0
|
11 |
httpx==0.23.0
|
12 |
+
natsort
|