Summarizer / app.py
demomodels's picture
Download the model before loading it
12deec3 verified
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import numpy as np
from gensim.models import Word2Vec
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from collections import defaultdict
import spacy
from transformers import pipeline
from sklearn.metrics import davies_bouldin_score
MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Download the 'en_core_web_sm' model
spacy.cli.download("en_core_web_sm")
# Load the model
nlp = spacy.load("en_core_web_sm")
def summarize(text, max_length=1000):
return summarizer(text, max_length=min(max_length, len(text)), min_length=1, do_sample=False)[0]["summary_text"]
def segment_sentences(text):
# Process the text using spaCy
doc = nlp(text)
# Extract sentences from the processed document
return [sent.text for sent in doc.sents]
def preprocess_sentences(sentences):
preprocessed_sentences = []
for sentence in sentences:
# Tokenize and lemmatize the sentence using spaCy
doc = nlp(sentence.lower())
tokens = [token.lemma_ for token in doc if not token.is_stop and token.is_alpha]
preprocessed_sentences.append(tokens)
return preprocessed_sentences
def embedding(preprocessed_sentences):
model = Word2Vec(preprocessed_sentences, vector_size=100, window=5, min_count=1, sg=1)
sentence_embeddings = []
for sentence in preprocessed_sentences:
word_embeddings = [model.wv[word] for word in sentence if word in model.wv]
if word_embeddings:
sentence_embeddings.append(np.mean(word_embeddings, axis=0))
else:
# Handle the case when none of the words in the sentence exist in the Word2Vec vocabulary
sentence_embeddings.append(np.zeros(model.vector_size)) # Use zero vector as placeholder
return sentence_embeddings
def optimal_n_clusters(sentence_embeddings):
cosine_sim_matrix = cosine_similarity(sentence_embeddings)
db_scores = []
k_values = range(2, len(sentence_embeddings))
for k in k_values:
kmeans = KMeans(n_clusters=k, n_init=10, random_state=42)
cluster_labels = kmeans.fit_predict(cosine_sim_matrix)
db_scores.append(davies_bouldin_score(cosine_sim_matrix, cluster_labels))
# Choose the optimal number of clusters based on Davies-Bouldin index
return (cosine_sim_matrix, np.argmin(db_scores) + 2) # Add 2 to account for skipping k=1
def cluster_assignments(cosine_sim_matrix, optimal_n_clusters):
# Cluster sentence embeddings using KMeans with the optimal number of clusters
kmeans = KMeans(n_clusters=optimal_n_clusters, n_init=10, random_state=42)
return kmeans.fit_predict(cosine_sim_matrix)
def clusters(sentences, cluster_assignments):
# Group sentences into clusters
clusters = defaultdict(list)
for i, sentence in enumerate(sentences):
clusters[cluster_assignments[i]].append(sentence)
result = defaultdict(list)
for i in range(len(clusters)):
cluster = ' '.join(clusters[i])
title = summarize(cluster, 10)
result[title].extend(clusters[i])
return result
def format_as_bullet_points(dictionary):
bullet_points = ""
for key, values in dictionary.items():
bullet_points += f"- {key}:\n"
for value in values:
bullet_points += f" - {value}\n"
return bullet_points.strip()
def final_result(input):
text = summarize(input)
sentences = segment_sentences(text)
preprocessed_sentences = preprocess_sentences(sentences)
sentence_embeddings = embedding(preprocessed_sentences)
cosine_sim_matrix, optimal_number_of_clusters = optimal_n_clusters(sentence_embeddings)
clusters_assignments = cluster_assignments(cosine_sim_matrix, optimal_number_of_clusters)
all_clusters = clusters(sentences, clusters_assignments)
return format_as_bullet_points(all_clusters)
def transcribe(inputs, task):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return final_result(text)
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return html_embed_str, final_result(text)
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
],
outputs=["html", "text"],
layout="horizontal",
theme="huggingface",
title="Whisper Large V3: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.launch(enable_queue=True)