Spaces:
Runtime error
Runtime error
File size: 1,820 Bytes
77a444f d7e3201 25ab3ef 77a444f 1258daf 5af6582 1258daf 5af6582 d7e3201 5af6582 fb55ceb d7e3201 54d6302 110cf2a 61730d0 1258daf fb55ceb 1258daf fb55ceb 54d6302 fb55ceb 1258daf 77a444f 4eb2b3c 744301b 32685c7 744301b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import transformers
import gradio as gr
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
model_name = 'dennis-fast/DialoGPT-ElonMusk'
#model_name = 'luca-martial/DialoGPT-Elon'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(bot_input_ids,
max_length=1000,
#max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
#do_sample=True,
#temperature = 0.8
top_p = 0.92,
top_k = 50
).tolist()
# convert the tokens to text, and then split the responses into the right format
response = tokenizer.decode(history[0]).split("<|endoftext|>")
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
if len(response) > 4:
response.pop(0)
return response, history
gr.Interface(fn=predict,
theme="default",
css=".footer {display:none !important}",
inputs=["text", "state"],
examples=[['Hi, please introduce yourself.'],['Where do you live?'],['What is meaning of life?'],['Should I buy Dogecoin?']],
outputs=["chatbot", "state"]).launch() |