import transformers import gradio as gr import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer model_name = 'dennis-fast/DialoGPT-ElonMusk' #model_name = 'luca-martial/DialoGPT-Elon' tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate(bot_input_ids, max_length=1000, #max_length=200, pad_token_id=tokenizer.eos_token_id, #no_repeat_ngram_size=3, #do_sample=True, #top_k=100, #top_p=0.7, #temperature = 0.8 ).tolist() # convert the tokens to text, and then split the responses into the right format response = tokenizer.decode(history[0]).split("<|endoftext|>") response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list return response, history gr.Interface(fn=predict, theme="default", css=".footer {display:none !important}", inputs=["text", "state"], examples=[['Hi, please introduce yourself.'],['Where do you live?'],['What is meaning of life?'],['Should I buy Dogecoin?']], outputs=["chatbot", "state"]).launch()